Polytope of Type {518}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {518}*1036
Also Known As : 518-gon, {518}. if this polytope has another name.
Group : SmallGroup(1036,10)
Rank : 2
Schlafli Type : {518}
Number of vertices, edges, etc : 518, 518
Order of s0s1 : 518
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {259}*518
   7-fold quotients : {74}*148
   14-fold quotients : {37}*74
   37-fold quotients : {14}*28
   74-fold quotients : {7}*14
   259-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 37)(  3, 36)(  4, 35)(  5, 34)(  6, 33)(  7, 32)(  8, 31)(  9, 30)
( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)( 17, 22)
( 18, 21)( 19, 20)( 38,223)( 39,259)( 40,258)( 41,257)( 42,256)( 43,255)
( 44,254)( 45,253)( 46,252)( 47,251)( 48,250)( 49,249)( 50,248)( 51,247)
( 52,246)( 53,245)( 54,244)( 55,243)( 56,242)( 57,241)( 58,240)( 59,239)
( 60,238)( 61,237)( 62,236)( 63,235)( 64,234)( 65,233)( 66,232)( 67,231)
( 68,230)( 69,229)( 70,228)( 71,227)( 72,226)( 73,225)( 74,224)( 75,186)
( 76,222)( 77,221)( 78,220)( 79,219)( 80,218)( 81,217)( 82,216)( 83,215)
( 84,214)( 85,213)( 86,212)( 87,211)( 88,210)( 89,209)( 90,208)( 91,207)
( 92,206)( 93,205)( 94,204)( 95,203)( 96,202)( 97,201)( 98,200)( 99,199)
(100,198)(101,197)(102,196)(103,195)(104,194)(105,193)(106,192)(107,191)
(108,190)(109,189)(110,188)(111,187)(112,149)(113,185)(114,184)(115,183)
(116,182)(117,181)(118,180)(119,179)(120,178)(121,177)(122,176)(123,175)
(124,174)(125,173)(126,172)(127,171)(128,170)(129,169)(130,168)(131,167)
(132,166)(133,165)(134,164)(135,163)(136,162)(137,161)(138,160)(139,159)
(140,158)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)
(148,150)(261,296)(262,295)(263,294)(264,293)(265,292)(266,291)(267,290)
(268,289)(269,288)(270,287)(271,286)(272,285)(273,284)(274,283)(275,282)
(276,281)(277,280)(278,279)(297,482)(298,518)(299,517)(300,516)(301,515)
(302,514)(303,513)(304,512)(305,511)(306,510)(307,509)(308,508)(309,507)
(310,506)(311,505)(312,504)(313,503)(314,502)(315,501)(316,500)(317,499)
(318,498)(319,497)(320,496)(321,495)(322,494)(323,493)(324,492)(325,491)
(326,490)(327,489)(328,488)(329,487)(330,486)(331,485)(332,484)(333,483)
(334,445)(335,481)(336,480)(337,479)(338,478)(339,477)(340,476)(341,475)
(342,474)(343,473)(344,472)(345,471)(346,470)(347,469)(348,468)(349,467)
(350,466)(351,465)(352,464)(353,463)(354,462)(355,461)(356,460)(357,459)
(358,458)(359,457)(360,456)(361,455)(362,454)(363,453)(364,452)(365,451)
(366,450)(367,449)(368,448)(369,447)(370,446)(371,408)(372,444)(373,443)
(374,442)(375,441)(376,440)(377,439)(378,438)(379,437)(380,436)(381,435)
(382,434)(383,433)(384,432)(385,431)(386,430)(387,429)(388,428)(389,427)
(390,426)(391,425)(392,424)(393,423)(394,422)(395,421)(396,420)(397,419)
(398,418)(399,417)(400,416)(401,415)(402,414)(403,413)(404,412)(405,411)
(406,410)(407,409);;
s1 := (  1,298)(  2,297)(  3,333)(  4,332)(  5,331)(  6,330)(  7,329)(  8,328)
(  9,327)( 10,326)( 11,325)( 12,324)( 13,323)( 14,322)( 15,321)( 16,320)
( 17,319)( 18,318)( 19,317)( 20,316)( 21,315)( 22,314)( 23,313)( 24,312)
( 25,311)( 26,310)( 27,309)( 28,308)( 29,307)( 30,306)( 31,305)( 32,304)
( 33,303)( 34,302)( 35,301)( 36,300)( 37,299)( 38,261)( 39,260)( 40,296)
( 41,295)( 42,294)( 43,293)( 44,292)( 45,291)( 46,290)( 47,289)( 48,288)
( 49,287)( 50,286)( 51,285)( 52,284)( 53,283)( 54,282)( 55,281)( 56,280)
( 57,279)( 58,278)( 59,277)( 60,276)( 61,275)( 62,274)( 63,273)( 64,272)
( 65,271)( 66,270)( 67,269)( 68,268)( 69,267)( 70,266)( 71,265)( 72,264)
( 73,263)( 74,262)( 75,483)( 76,482)( 77,518)( 78,517)( 79,516)( 80,515)
( 81,514)( 82,513)( 83,512)( 84,511)( 85,510)( 86,509)( 87,508)( 88,507)
( 89,506)( 90,505)( 91,504)( 92,503)( 93,502)( 94,501)( 95,500)( 96,499)
( 97,498)( 98,497)( 99,496)(100,495)(101,494)(102,493)(103,492)(104,491)
(105,490)(106,489)(107,488)(108,487)(109,486)(110,485)(111,484)(112,446)
(113,445)(114,481)(115,480)(116,479)(117,478)(118,477)(119,476)(120,475)
(121,474)(122,473)(123,472)(124,471)(125,470)(126,469)(127,468)(128,467)
(129,466)(130,465)(131,464)(132,463)(133,462)(134,461)(135,460)(136,459)
(137,458)(138,457)(139,456)(140,455)(141,454)(142,453)(143,452)(144,451)
(145,450)(146,449)(147,448)(148,447)(149,409)(150,408)(151,444)(152,443)
(153,442)(154,441)(155,440)(156,439)(157,438)(158,437)(159,436)(160,435)
(161,434)(162,433)(163,432)(164,431)(165,430)(166,429)(167,428)(168,427)
(169,426)(170,425)(171,424)(172,423)(173,422)(174,421)(175,420)(176,419)
(177,418)(178,417)(179,416)(180,415)(181,414)(182,413)(183,412)(184,411)
(185,410)(186,372)(187,371)(188,407)(189,406)(190,405)(191,404)(192,403)
(193,402)(194,401)(195,400)(196,399)(197,398)(198,397)(199,396)(200,395)
(201,394)(202,393)(203,392)(204,391)(205,390)(206,389)(207,388)(208,387)
(209,386)(210,385)(211,384)(212,383)(213,382)(214,381)(215,380)(216,379)
(217,378)(218,377)(219,376)(220,375)(221,374)(222,373)(223,335)(224,334)
(225,370)(226,369)(227,368)(228,367)(229,366)(230,365)(231,364)(232,363)
(233,362)(234,361)(235,360)(236,359)(237,358)(238,357)(239,356)(240,355)
(241,354)(242,353)(243,352)(244,351)(245,350)(246,349)(247,348)(248,347)
(249,346)(250,345)(251,344)(252,343)(253,342)(254,341)(255,340)(256,339)
(257,338)(258,337)(259,336);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(518)!(  2, 37)(  3, 36)(  4, 35)(  5, 34)(  6, 33)(  7, 32)(  8, 31)
(  9, 30)( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)
( 17, 22)( 18, 21)( 19, 20)( 38,223)( 39,259)( 40,258)( 41,257)( 42,256)
( 43,255)( 44,254)( 45,253)( 46,252)( 47,251)( 48,250)( 49,249)( 50,248)
( 51,247)( 52,246)( 53,245)( 54,244)( 55,243)( 56,242)( 57,241)( 58,240)
( 59,239)( 60,238)( 61,237)( 62,236)( 63,235)( 64,234)( 65,233)( 66,232)
( 67,231)( 68,230)( 69,229)( 70,228)( 71,227)( 72,226)( 73,225)( 74,224)
( 75,186)( 76,222)( 77,221)( 78,220)( 79,219)( 80,218)( 81,217)( 82,216)
( 83,215)( 84,214)( 85,213)( 86,212)( 87,211)( 88,210)( 89,209)( 90,208)
( 91,207)( 92,206)( 93,205)( 94,204)( 95,203)( 96,202)( 97,201)( 98,200)
( 99,199)(100,198)(101,197)(102,196)(103,195)(104,194)(105,193)(106,192)
(107,191)(108,190)(109,189)(110,188)(111,187)(112,149)(113,185)(114,184)
(115,183)(116,182)(117,181)(118,180)(119,179)(120,178)(121,177)(122,176)
(123,175)(124,174)(125,173)(126,172)(127,171)(128,170)(129,169)(130,168)
(131,167)(132,166)(133,165)(134,164)(135,163)(136,162)(137,161)(138,160)
(139,159)(140,158)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)
(147,151)(148,150)(261,296)(262,295)(263,294)(264,293)(265,292)(266,291)
(267,290)(268,289)(269,288)(270,287)(271,286)(272,285)(273,284)(274,283)
(275,282)(276,281)(277,280)(278,279)(297,482)(298,518)(299,517)(300,516)
(301,515)(302,514)(303,513)(304,512)(305,511)(306,510)(307,509)(308,508)
(309,507)(310,506)(311,505)(312,504)(313,503)(314,502)(315,501)(316,500)
(317,499)(318,498)(319,497)(320,496)(321,495)(322,494)(323,493)(324,492)
(325,491)(326,490)(327,489)(328,488)(329,487)(330,486)(331,485)(332,484)
(333,483)(334,445)(335,481)(336,480)(337,479)(338,478)(339,477)(340,476)
(341,475)(342,474)(343,473)(344,472)(345,471)(346,470)(347,469)(348,468)
(349,467)(350,466)(351,465)(352,464)(353,463)(354,462)(355,461)(356,460)
(357,459)(358,458)(359,457)(360,456)(361,455)(362,454)(363,453)(364,452)
(365,451)(366,450)(367,449)(368,448)(369,447)(370,446)(371,408)(372,444)
(373,443)(374,442)(375,441)(376,440)(377,439)(378,438)(379,437)(380,436)
(381,435)(382,434)(383,433)(384,432)(385,431)(386,430)(387,429)(388,428)
(389,427)(390,426)(391,425)(392,424)(393,423)(394,422)(395,421)(396,420)
(397,419)(398,418)(399,417)(400,416)(401,415)(402,414)(403,413)(404,412)
(405,411)(406,410)(407,409);
s1 := Sym(518)!(  1,298)(  2,297)(  3,333)(  4,332)(  5,331)(  6,330)(  7,329)
(  8,328)(  9,327)( 10,326)( 11,325)( 12,324)( 13,323)( 14,322)( 15,321)
( 16,320)( 17,319)( 18,318)( 19,317)( 20,316)( 21,315)( 22,314)( 23,313)
( 24,312)( 25,311)( 26,310)( 27,309)( 28,308)( 29,307)( 30,306)( 31,305)
( 32,304)( 33,303)( 34,302)( 35,301)( 36,300)( 37,299)( 38,261)( 39,260)
( 40,296)( 41,295)( 42,294)( 43,293)( 44,292)( 45,291)( 46,290)( 47,289)
( 48,288)( 49,287)( 50,286)( 51,285)( 52,284)( 53,283)( 54,282)( 55,281)
( 56,280)( 57,279)( 58,278)( 59,277)( 60,276)( 61,275)( 62,274)( 63,273)
( 64,272)( 65,271)( 66,270)( 67,269)( 68,268)( 69,267)( 70,266)( 71,265)
( 72,264)( 73,263)( 74,262)( 75,483)( 76,482)( 77,518)( 78,517)( 79,516)
( 80,515)( 81,514)( 82,513)( 83,512)( 84,511)( 85,510)( 86,509)( 87,508)
( 88,507)( 89,506)( 90,505)( 91,504)( 92,503)( 93,502)( 94,501)( 95,500)
( 96,499)( 97,498)( 98,497)( 99,496)(100,495)(101,494)(102,493)(103,492)
(104,491)(105,490)(106,489)(107,488)(108,487)(109,486)(110,485)(111,484)
(112,446)(113,445)(114,481)(115,480)(116,479)(117,478)(118,477)(119,476)
(120,475)(121,474)(122,473)(123,472)(124,471)(125,470)(126,469)(127,468)
(128,467)(129,466)(130,465)(131,464)(132,463)(133,462)(134,461)(135,460)
(136,459)(137,458)(138,457)(139,456)(140,455)(141,454)(142,453)(143,452)
(144,451)(145,450)(146,449)(147,448)(148,447)(149,409)(150,408)(151,444)
(152,443)(153,442)(154,441)(155,440)(156,439)(157,438)(158,437)(159,436)
(160,435)(161,434)(162,433)(163,432)(164,431)(165,430)(166,429)(167,428)
(168,427)(169,426)(170,425)(171,424)(172,423)(173,422)(174,421)(175,420)
(176,419)(177,418)(178,417)(179,416)(180,415)(181,414)(182,413)(183,412)
(184,411)(185,410)(186,372)(187,371)(188,407)(189,406)(190,405)(191,404)
(192,403)(193,402)(194,401)(195,400)(196,399)(197,398)(198,397)(199,396)
(200,395)(201,394)(202,393)(203,392)(204,391)(205,390)(206,389)(207,388)
(208,387)(209,386)(210,385)(211,384)(212,383)(213,382)(214,381)(215,380)
(216,379)(217,378)(218,377)(219,376)(220,375)(221,374)(222,373)(223,335)
(224,334)(225,370)(226,369)(227,368)(228,367)(229,366)(230,365)(231,364)
(232,363)(233,362)(234,361)(235,360)(236,359)(237,358)(238,357)(239,356)
(240,355)(241,354)(242,353)(243,352)(244,351)(245,350)(246,349)(247,348)
(248,347)(249,346)(250,345)(251,344)(252,343)(253,342)(254,341)(255,340)
(256,339)(257,338)(258,337)(259,336);
poly := sub<Sym(518)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope