include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {524}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {524}*1048
Also Known As : 524-gon, {524}. if this polytope has another name.
Group : SmallGroup(1048,10)
Rank : 2
Schlafli Type : {524}
Number of vertices, edges, etc : 524, 524
Order of s0s1 : 524
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {262}*524
4-fold quotients : {131}*262
131-fold quotients : {4}*8
262-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,131)( 3,130)( 4,129)( 5,128)( 6,127)( 7,126)( 8,125)( 9,124)
( 10,123)( 11,122)( 12,121)( 13,120)( 14,119)( 15,118)( 16,117)( 17,116)
( 18,115)( 19,114)( 20,113)( 21,112)( 22,111)( 23,110)( 24,109)( 25,108)
( 26,107)( 27,106)( 28,105)( 29,104)( 30,103)( 31,102)( 32,101)( 33,100)
( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)( 40, 93)( 41, 92)
( 42, 91)( 43, 90)( 44, 89)( 45, 88)( 46, 87)( 47, 86)( 48, 85)( 49, 84)
( 50, 83)( 51, 82)( 52, 81)( 53, 80)( 54, 79)( 55, 78)( 56, 77)( 57, 76)
( 58, 75)( 59, 74)( 60, 73)( 61, 72)( 62, 71)( 63, 70)( 64, 69)( 65, 68)
( 66, 67)(133,262)(134,261)(135,260)(136,259)(137,258)(138,257)(139,256)
(140,255)(141,254)(142,253)(143,252)(144,251)(145,250)(146,249)(147,248)
(148,247)(149,246)(150,245)(151,244)(152,243)(153,242)(154,241)(155,240)
(156,239)(157,238)(158,237)(159,236)(160,235)(161,234)(162,233)(163,232)
(164,231)(165,230)(166,229)(167,228)(168,227)(169,226)(170,225)(171,224)
(172,223)(173,222)(174,221)(175,220)(176,219)(177,218)(178,217)(179,216)
(180,215)(181,214)(182,213)(183,212)(184,211)(185,210)(186,209)(187,208)
(188,207)(189,206)(190,205)(191,204)(192,203)(193,202)(194,201)(195,200)
(196,199)(197,198)(263,394)(264,524)(265,523)(266,522)(267,521)(268,520)
(269,519)(270,518)(271,517)(272,516)(273,515)(274,514)(275,513)(276,512)
(277,511)(278,510)(279,509)(280,508)(281,507)(282,506)(283,505)(284,504)
(285,503)(286,502)(287,501)(288,500)(289,499)(290,498)(291,497)(292,496)
(293,495)(294,494)(295,493)(296,492)(297,491)(298,490)(299,489)(300,488)
(301,487)(302,486)(303,485)(304,484)(305,483)(306,482)(307,481)(308,480)
(309,479)(310,478)(311,477)(312,476)(313,475)(314,474)(315,473)(316,472)
(317,471)(318,470)(319,469)(320,468)(321,467)(322,466)(323,465)(324,464)
(325,463)(326,462)(327,461)(328,460)(329,459)(330,458)(331,457)(332,456)
(333,455)(334,454)(335,453)(336,452)(337,451)(338,450)(339,449)(340,448)
(341,447)(342,446)(343,445)(344,444)(345,443)(346,442)(347,441)(348,440)
(349,439)(350,438)(351,437)(352,436)(353,435)(354,434)(355,433)(356,432)
(357,431)(358,430)(359,429)(360,428)(361,427)(362,426)(363,425)(364,424)
(365,423)(366,422)(367,421)(368,420)(369,419)(370,418)(371,417)(372,416)
(373,415)(374,414)(375,413)(376,412)(377,411)(378,410)(379,409)(380,408)
(381,407)(382,406)(383,405)(384,404)(385,403)(386,402)(387,401)(388,400)
(389,399)(390,398)(391,397)(392,396)(393,395);;
s1 := ( 1,264)( 2,263)( 3,393)( 4,392)( 5,391)( 6,390)( 7,389)( 8,388)
( 9,387)( 10,386)( 11,385)( 12,384)( 13,383)( 14,382)( 15,381)( 16,380)
( 17,379)( 18,378)( 19,377)( 20,376)( 21,375)( 22,374)( 23,373)( 24,372)
( 25,371)( 26,370)( 27,369)( 28,368)( 29,367)( 30,366)( 31,365)( 32,364)
( 33,363)( 34,362)( 35,361)( 36,360)( 37,359)( 38,358)( 39,357)( 40,356)
( 41,355)( 42,354)( 43,353)( 44,352)( 45,351)( 46,350)( 47,349)( 48,348)
( 49,347)( 50,346)( 51,345)( 52,344)( 53,343)( 54,342)( 55,341)( 56,340)
( 57,339)( 58,338)( 59,337)( 60,336)( 61,335)( 62,334)( 63,333)( 64,332)
( 65,331)( 66,330)( 67,329)( 68,328)( 69,327)( 70,326)( 71,325)( 72,324)
( 73,323)( 74,322)( 75,321)( 76,320)( 77,319)( 78,318)( 79,317)( 80,316)
( 81,315)( 82,314)( 83,313)( 84,312)( 85,311)( 86,310)( 87,309)( 88,308)
( 89,307)( 90,306)( 91,305)( 92,304)( 93,303)( 94,302)( 95,301)( 96,300)
( 97,299)( 98,298)( 99,297)(100,296)(101,295)(102,294)(103,293)(104,292)
(105,291)(106,290)(107,289)(108,288)(109,287)(110,286)(111,285)(112,284)
(113,283)(114,282)(115,281)(116,280)(117,279)(118,278)(119,277)(120,276)
(121,275)(122,274)(123,273)(124,272)(125,271)(126,270)(127,269)(128,268)
(129,267)(130,266)(131,265)(132,395)(133,394)(134,524)(135,523)(136,522)
(137,521)(138,520)(139,519)(140,518)(141,517)(142,516)(143,515)(144,514)
(145,513)(146,512)(147,511)(148,510)(149,509)(150,508)(151,507)(152,506)
(153,505)(154,504)(155,503)(156,502)(157,501)(158,500)(159,499)(160,498)
(161,497)(162,496)(163,495)(164,494)(165,493)(166,492)(167,491)(168,490)
(169,489)(170,488)(171,487)(172,486)(173,485)(174,484)(175,483)(176,482)
(177,481)(178,480)(179,479)(180,478)(181,477)(182,476)(183,475)(184,474)
(185,473)(186,472)(187,471)(188,470)(189,469)(190,468)(191,467)(192,466)
(193,465)(194,464)(195,463)(196,462)(197,461)(198,460)(199,459)(200,458)
(201,457)(202,456)(203,455)(204,454)(205,453)(206,452)(207,451)(208,450)
(209,449)(210,448)(211,447)(212,446)(213,445)(214,444)(215,443)(216,442)
(217,441)(218,440)(219,439)(220,438)(221,437)(222,436)(223,435)(224,434)
(225,433)(226,432)(227,431)(228,430)(229,429)(230,428)(231,427)(232,426)
(233,425)(234,424)(235,423)(236,422)(237,421)(238,420)(239,419)(240,418)
(241,417)(242,416)(243,415)(244,414)(245,413)(246,412)(247,411)(248,410)
(249,409)(250,408)(251,407)(252,406)(253,405)(254,404)(255,403)(256,402)
(257,401)(258,400)(259,399)(260,398)(261,397)(262,396);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(524)!( 2,131)( 3,130)( 4,129)( 5,128)( 6,127)( 7,126)( 8,125)
( 9,124)( 10,123)( 11,122)( 12,121)( 13,120)( 14,119)( 15,118)( 16,117)
( 17,116)( 18,115)( 19,114)( 20,113)( 21,112)( 22,111)( 23,110)( 24,109)
( 25,108)( 26,107)( 27,106)( 28,105)( 29,104)( 30,103)( 31,102)( 32,101)
( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)( 40, 93)
( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 88)( 46, 87)( 47, 86)( 48, 85)
( 49, 84)( 50, 83)( 51, 82)( 52, 81)( 53, 80)( 54, 79)( 55, 78)( 56, 77)
( 57, 76)( 58, 75)( 59, 74)( 60, 73)( 61, 72)( 62, 71)( 63, 70)( 64, 69)
( 65, 68)( 66, 67)(133,262)(134,261)(135,260)(136,259)(137,258)(138,257)
(139,256)(140,255)(141,254)(142,253)(143,252)(144,251)(145,250)(146,249)
(147,248)(148,247)(149,246)(150,245)(151,244)(152,243)(153,242)(154,241)
(155,240)(156,239)(157,238)(158,237)(159,236)(160,235)(161,234)(162,233)
(163,232)(164,231)(165,230)(166,229)(167,228)(168,227)(169,226)(170,225)
(171,224)(172,223)(173,222)(174,221)(175,220)(176,219)(177,218)(178,217)
(179,216)(180,215)(181,214)(182,213)(183,212)(184,211)(185,210)(186,209)
(187,208)(188,207)(189,206)(190,205)(191,204)(192,203)(193,202)(194,201)
(195,200)(196,199)(197,198)(263,394)(264,524)(265,523)(266,522)(267,521)
(268,520)(269,519)(270,518)(271,517)(272,516)(273,515)(274,514)(275,513)
(276,512)(277,511)(278,510)(279,509)(280,508)(281,507)(282,506)(283,505)
(284,504)(285,503)(286,502)(287,501)(288,500)(289,499)(290,498)(291,497)
(292,496)(293,495)(294,494)(295,493)(296,492)(297,491)(298,490)(299,489)
(300,488)(301,487)(302,486)(303,485)(304,484)(305,483)(306,482)(307,481)
(308,480)(309,479)(310,478)(311,477)(312,476)(313,475)(314,474)(315,473)
(316,472)(317,471)(318,470)(319,469)(320,468)(321,467)(322,466)(323,465)
(324,464)(325,463)(326,462)(327,461)(328,460)(329,459)(330,458)(331,457)
(332,456)(333,455)(334,454)(335,453)(336,452)(337,451)(338,450)(339,449)
(340,448)(341,447)(342,446)(343,445)(344,444)(345,443)(346,442)(347,441)
(348,440)(349,439)(350,438)(351,437)(352,436)(353,435)(354,434)(355,433)
(356,432)(357,431)(358,430)(359,429)(360,428)(361,427)(362,426)(363,425)
(364,424)(365,423)(366,422)(367,421)(368,420)(369,419)(370,418)(371,417)
(372,416)(373,415)(374,414)(375,413)(376,412)(377,411)(378,410)(379,409)
(380,408)(381,407)(382,406)(383,405)(384,404)(385,403)(386,402)(387,401)
(388,400)(389,399)(390,398)(391,397)(392,396)(393,395);
s1 := Sym(524)!( 1,264)( 2,263)( 3,393)( 4,392)( 5,391)( 6,390)( 7,389)
( 8,388)( 9,387)( 10,386)( 11,385)( 12,384)( 13,383)( 14,382)( 15,381)
( 16,380)( 17,379)( 18,378)( 19,377)( 20,376)( 21,375)( 22,374)( 23,373)
( 24,372)( 25,371)( 26,370)( 27,369)( 28,368)( 29,367)( 30,366)( 31,365)
( 32,364)( 33,363)( 34,362)( 35,361)( 36,360)( 37,359)( 38,358)( 39,357)
( 40,356)( 41,355)( 42,354)( 43,353)( 44,352)( 45,351)( 46,350)( 47,349)
( 48,348)( 49,347)( 50,346)( 51,345)( 52,344)( 53,343)( 54,342)( 55,341)
( 56,340)( 57,339)( 58,338)( 59,337)( 60,336)( 61,335)( 62,334)( 63,333)
( 64,332)( 65,331)( 66,330)( 67,329)( 68,328)( 69,327)( 70,326)( 71,325)
( 72,324)( 73,323)( 74,322)( 75,321)( 76,320)( 77,319)( 78,318)( 79,317)
( 80,316)( 81,315)( 82,314)( 83,313)( 84,312)( 85,311)( 86,310)( 87,309)
( 88,308)( 89,307)( 90,306)( 91,305)( 92,304)( 93,303)( 94,302)( 95,301)
( 96,300)( 97,299)( 98,298)( 99,297)(100,296)(101,295)(102,294)(103,293)
(104,292)(105,291)(106,290)(107,289)(108,288)(109,287)(110,286)(111,285)
(112,284)(113,283)(114,282)(115,281)(116,280)(117,279)(118,278)(119,277)
(120,276)(121,275)(122,274)(123,273)(124,272)(125,271)(126,270)(127,269)
(128,268)(129,267)(130,266)(131,265)(132,395)(133,394)(134,524)(135,523)
(136,522)(137,521)(138,520)(139,519)(140,518)(141,517)(142,516)(143,515)
(144,514)(145,513)(146,512)(147,511)(148,510)(149,509)(150,508)(151,507)
(152,506)(153,505)(154,504)(155,503)(156,502)(157,501)(158,500)(159,499)
(160,498)(161,497)(162,496)(163,495)(164,494)(165,493)(166,492)(167,491)
(168,490)(169,489)(170,488)(171,487)(172,486)(173,485)(174,484)(175,483)
(176,482)(177,481)(178,480)(179,479)(180,478)(181,477)(182,476)(183,475)
(184,474)(185,473)(186,472)(187,471)(188,470)(189,469)(190,468)(191,467)
(192,466)(193,465)(194,464)(195,463)(196,462)(197,461)(198,460)(199,459)
(200,458)(201,457)(202,456)(203,455)(204,454)(205,453)(206,452)(207,451)
(208,450)(209,449)(210,448)(211,447)(212,446)(213,445)(214,444)(215,443)
(216,442)(217,441)(218,440)(219,439)(220,438)(221,437)(222,436)(223,435)
(224,434)(225,433)(226,432)(227,431)(228,430)(229,429)(230,428)(231,427)
(232,426)(233,425)(234,424)(235,423)(236,422)(237,421)(238,420)(239,419)
(240,418)(241,417)(242,416)(243,415)(244,414)(245,413)(246,412)(247,411)
(248,410)(249,409)(250,408)(251,407)(252,406)(253,405)(254,404)(255,403)
(256,402)(257,401)(258,400)(259,399)(260,398)(261,397)(262,396);
poly := sub<Sym(524)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope