include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {530}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {530}*1060
Also Known As : 530-gon, {530}. if this polytope has another name.
Group : SmallGroup(1060,14)
Rank : 2
Schlafli Type : {530}
Number of vertices, edges, etc : 530, 530
Order of s0s1 : 530
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {265}*530
5-fold quotients : {106}*212
10-fold quotients : {53}*106
53-fold quotients : {10}*20
106-fold quotients : {5}*10
265-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 53)( 3, 52)( 4, 51)( 5, 50)( 6, 49)( 7, 48)( 8, 47)( 9, 46)
( 10, 45)( 11, 44)( 12, 43)( 13, 42)( 14, 41)( 15, 40)( 16, 39)( 17, 38)
( 18, 37)( 19, 36)( 20, 35)( 21, 34)( 22, 33)( 23, 32)( 24, 31)( 25, 30)
( 26, 29)( 27, 28)( 54,213)( 55,265)( 56,264)( 57,263)( 58,262)( 59,261)
( 60,260)( 61,259)( 62,258)( 63,257)( 64,256)( 65,255)( 66,254)( 67,253)
( 68,252)( 69,251)( 70,250)( 71,249)( 72,248)( 73,247)( 74,246)( 75,245)
( 76,244)( 77,243)( 78,242)( 79,241)( 80,240)( 81,239)( 82,238)( 83,237)
( 84,236)( 85,235)( 86,234)( 87,233)( 88,232)( 89,231)( 90,230)( 91,229)
( 92,228)( 93,227)( 94,226)( 95,225)( 96,224)( 97,223)( 98,222)( 99,221)
(100,220)(101,219)(102,218)(103,217)(104,216)(105,215)(106,214)(107,160)
(108,212)(109,211)(110,210)(111,209)(112,208)(113,207)(114,206)(115,205)
(116,204)(117,203)(118,202)(119,201)(120,200)(121,199)(122,198)(123,197)
(124,196)(125,195)(126,194)(127,193)(128,192)(129,191)(130,190)(131,189)
(132,188)(133,187)(134,186)(135,185)(136,184)(137,183)(138,182)(139,181)
(140,180)(141,179)(142,178)(143,177)(144,176)(145,175)(146,174)(147,173)
(148,172)(149,171)(150,170)(151,169)(152,168)(153,167)(154,166)(155,165)
(156,164)(157,163)(158,162)(159,161)(267,318)(268,317)(269,316)(270,315)
(271,314)(272,313)(273,312)(274,311)(275,310)(276,309)(277,308)(278,307)
(279,306)(280,305)(281,304)(282,303)(283,302)(284,301)(285,300)(286,299)
(287,298)(288,297)(289,296)(290,295)(291,294)(292,293)(319,478)(320,530)
(321,529)(322,528)(323,527)(324,526)(325,525)(326,524)(327,523)(328,522)
(329,521)(330,520)(331,519)(332,518)(333,517)(334,516)(335,515)(336,514)
(337,513)(338,512)(339,511)(340,510)(341,509)(342,508)(343,507)(344,506)
(345,505)(346,504)(347,503)(348,502)(349,501)(350,500)(351,499)(352,498)
(353,497)(354,496)(355,495)(356,494)(357,493)(358,492)(359,491)(360,490)
(361,489)(362,488)(363,487)(364,486)(365,485)(366,484)(367,483)(368,482)
(369,481)(370,480)(371,479)(372,425)(373,477)(374,476)(375,475)(376,474)
(377,473)(378,472)(379,471)(380,470)(381,469)(382,468)(383,467)(384,466)
(385,465)(386,464)(387,463)(388,462)(389,461)(390,460)(391,459)(392,458)
(393,457)(394,456)(395,455)(396,454)(397,453)(398,452)(399,451)(400,450)
(401,449)(402,448)(403,447)(404,446)(405,445)(406,444)(407,443)(408,442)
(409,441)(410,440)(411,439)(412,438)(413,437)(414,436)(415,435)(416,434)
(417,433)(418,432)(419,431)(420,430)(421,429)(422,428)(423,427)(424,426);;
s1 := ( 1,320)( 2,319)( 3,371)( 4,370)( 5,369)( 6,368)( 7,367)( 8,366)
( 9,365)( 10,364)( 11,363)( 12,362)( 13,361)( 14,360)( 15,359)( 16,358)
( 17,357)( 18,356)( 19,355)( 20,354)( 21,353)( 22,352)( 23,351)( 24,350)
( 25,349)( 26,348)( 27,347)( 28,346)( 29,345)( 30,344)( 31,343)( 32,342)
( 33,341)( 34,340)( 35,339)( 36,338)( 37,337)( 38,336)( 39,335)( 40,334)
( 41,333)( 42,332)( 43,331)( 44,330)( 45,329)( 46,328)( 47,327)( 48,326)
( 49,325)( 50,324)( 51,323)( 52,322)( 53,321)( 54,267)( 55,266)( 56,318)
( 57,317)( 58,316)( 59,315)( 60,314)( 61,313)( 62,312)( 63,311)( 64,310)
( 65,309)( 66,308)( 67,307)( 68,306)( 69,305)( 70,304)( 71,303)( 72,302)
( 73,301)( 74,300)( 75,299)( 76,298)( 77,297)( 78,296)( 79,295)( 80,294)
( 81,293)( 82,292)( 83,291)( 84,290)( 85,289)( 86,288)( 87,287)( 88,286)
( 89,285)( 90,284)( 91,283)( 92,282)( 93,281)( 94,280)( 95,279)( 96,278)
( 97,277)( 98,276)( 99,275)(100,274)(101,273)(102,272)(103,271)(104,270)
(105,269)(106,268)(107,479)(108,478)(109,530)(110,529)(111,528)(112,527)
(113,526)(114,525)(115,524)(116,523)(117,522)(118,521)(119,520)(120,519)
(121,518)(122,517)(123,516)(124,515)(125,514)(126,513)(127,512)(128,511)
(129,510)(130,509)(131,508)(132,507)(133,506)(134,505)(135,504)(136,503)
(137,502)(138,501)(139,500)(140,499)(141,498)(142,497)(143,496)(144,495)
(145,494)(146,493)(147,492)(148,491)(149,490)(150,489)(151,488)(152,487)
(153,486)(154,485)(155,484)(156,483)(157,482)(158,481)(159,480)(160,426)
(161,425)(162,477)(163,476)(164,475)(165,474)(166,473)(167,472)(168,471)
(169,470)(170,469)(171,468)(172,467)(173,466)(174,465)(175,464)(176,463)
(177,462)(178,461)(179,460)(180,459)(181,458)(182,457)(183,456)(184,455)
(185,454)(186,453)(187,452)(188,451)(189,450)(190,449)(191,448)(192,447)
(193,446)(194,445)(195,444)(196,443)(197,442)(198,441)(199,440)(200,439)
(201,438)(202,437)(203,436)(204,435)(205,434)(206,433)(207,432)(208,431)
(209,430)(210,429)(211,428)(212,427)(213,373)(214,372)(215,424)(216,423)
(217,422)(218,421)(219,420)(220,419)(221,418)(222,417)(223,416)(224,415)
(225,414)(226,413)(227,412)(228,411)(229,410)(230,409)(231,408)(232,407)
(233,406)(234,405)(235,404)(236,403)(237,402)(238,401)(239,400)(240,399)
(241,398)(242,397)(243,396)(244,395)(245,394)(246,393)(247,392)(248,391)
(249,390)(250,389)(251,388)(252,387)(253,386)(254,385)(255,384)(256,383)
(257,382)(258,381)(259,380)(260,379)(261,378)(262,377)(263,376)(264,375)
(265,374);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(530)!( 2, 53)( 3, 52)( 4, 51)( 5, 50)( 6, 49)( 7, 48)( 8, 47)
( 9, 46)( 10, 45)( 11, 44)( 12, 43)( 13, 42)( 14, 41)( 15, 40)( 16, 39)
( 17, 38)( 18, 37)( 19, 36)( 20, 35)( 21, 34)( 22, 33)( 23, 32)( 24, 31)
( 25, 30)( 26, 29)( 27, 28)( 54,213)( 55,265)( 56,264)( 57,263)( 58,262)
( 59,261)( 60,260)( 61,259)( 62,258)( 63,257)( 64,256)( 65,255)( 66,254)
( 67,253)( 68,252)( 69,251)( 70,250)( 71,249)( 72,248)( 73,247)( 74,246)
( 75,245)( 76,244)( 77,243)( 78,242)( 79,241)( 80,240)( 81,239)( 82,238)
( 83,237)( 84,236)( 85,235)( 86,234)( 87,233)( 88,232)( 89,231)( 90,230)
( 91,229)( 92,228)( 93,227)( 94,226)( 95,225)( 96,224)( 97,223)( 98,222)
( 99,221)(100,220)(101,219)(102,218)(103,217)(104,216)(105,215)(106,214)
(107,160)(108,212)(109,211)(110,210)(111,209)(112,208)(113,207)(114,206)
(115,205)(116,204)(117,203)(118,202)(119,201)(120,200)(121,199)(122,198)
(123,197)(124,196)(125,195)(126,194)(127,193)(128,192)(129,191)(130,190)
(131,189)(132,188)(133,187)(134,186)(135,185)(136,184)(137,183)(138,182)
(139,181)(140,180)(141,179)(142,178)(143,177)(144,176)(145,175)(146,174)
(147,173)(148,172)(149,171)(150,170)(151,169)(152,168)(153,167)(154,166)
(155,165)(156,164)(157,163)(158,162)(159,161)(267,318)(268,317)(269,316)
(270,315)(271,314)(272,313)(273,312)(274,311)(275,310)(276,309)(277,308)
(278,307)(279,306)(280,305)(281,304)(282,303)(283,302)(284,301)(285,300)
(286,299)(287,298)(288,297)(289,296)(290,295)(291,294)(292,293)(319,478)
(320,530)(321,529)(322,528)(323,527)(324,526)(325,525)(326,524)(327,523)
(328,522)(329,521)(330,520)(331,519)(332,518)(333,517)(334,516)(335,515)
(336,514)(337,513)(338,512)(339,511)(340,510)(341,509)(342,508)(343,507)
(344,506)(345,505)(346,504)(347,503)(348,502)(349,501)(350,500)(351,499)
(352,498)(353,497)(354,496)(355,495)(356,494)(357,493)(358,492)(359,491)
(360,490)(361,489)(362,488)(363,487)(364,486)(365,485)(366,484)(367,483)
(368,482)(369,481)(370,480)(371,479)(372,425)(373,477)(374,476)(375,475)
(376,474)(377,473)(378,472)(379,471)(380,470)(381,469)(382,468)(383,467)
(384,466)(385,465)(386,464)(387,463)(388,462)(389,461)(390,460)(391,459)
(392,458)(393,457)(394,456)(395,455)(396,454)(397,453)(398,452)(399,451)
(400,450)(401,449)(402,448)(403,447)(404,446)(405,445)(406,444)(407,443)
(408,442)(409,441)(410,440)(411,439)(412,438)(413,437)(414,436)(415,435)
(416,434)(417,433)(418,432)(419,431)(420,430)(421,429)(422,428)(423,427)
(424,426);
s1 := Sym(530)!( 1,320)( 2,319)( 3,371)( 4,370)( 5,369)( 6,368)( 7,367)
( 8,366)( 9,365)( 10,364)( 11,363)( 12,362)( 13,361)( 14,360)( 15,359)
( 16,358)( 17,357)( 18,356)( 19,355)( 20,354)( 21,353)( 22,352)( 23,351)
( 24,350)( 25,349)( 26,348)( 27,347)( 28,346)( 29,345)( 30,344)( 31,343)
( 32,342)( 33,341)( 34,340)( 35,339)( 36,338)( 37,337)( 38,336)( 39,335)
( 40,334)( 41,333)( 42,332)( 43,331)( 44,330)( 45,329)( 46,328)( 47,327)
( 48,326)( 49,325)( 50,324)( 51,323)( 52,322)( 53,321)( 54,267)( 55,266)
( 56,318)( 57,317)( 58,316)( 59,315)( 60,314)( 61,313)( 62,312)( 63,311)
( 64,310)( 65,309)( 66,308)( 67,307)( 68,306)( 69,305)( 70,304)( 71,303)
( 72,302)( 73,301)( 74,300)( 75,299)( 76,298)( 77,297)( 78,296)( 79,295)
( 80,294)( 81,293)( 82,292)( 83,291)( 84,290)( 85,289)( 86,288)( 87,287)
( 88,286)( 89,285)( 90,284)( 91,283)( 92,282)( 93,281)( 94,280)( 95,279)
( 96,278)( 97,277)( 98,276)( 99,275)(100,274)(101,273)(102,272)(103,271)
(104,270)(105,269)(106,268)(107,479)(108,478)(109,530)(110,529)(111,528)
(112,527)(113,526)(114,525)(115,524)(116,523)(117,522)(118,521)(119,520)
(120,519)(121,518)(122,517)(123,516)(124,515)(125,514)(126,513)(127,512)
(128,511)(129,510)(130,509)(131,508)(132,507)(133,506)(134,505)(135,504)
(136,503)(137,502)(138,501)(139,500)(140,499)(141,498)(142,497)(143,496)
(144,495)(145,494)(146,493)(147,492)(148,491)(149,490)(150,489)(151,488)
(152,487)(153,486)(154,485)(155,484)(156,483)(157,482)(158,481)(159,480)
(160,426)(161,425)(162,477)(163,476)(164,475)(165,474)(166,473)(167,472)
(168,471)(169,470)(170,469)(171,468)(172,467)(173,466)(174,465)(175,464)
(176,463)(177,462)(178,461)(179,460)(180,459)(181,458)(182,457)(183,456)
(184,455)(185,454)(186,453)(187,452)(188,451)(189,450)(190,449)(191,448)
(192,447)(193,446)(194,445)(195,444)(196,443)(197,442)(198,441)(199,440)
(200,439)(201,438)(202,437)(203,436)(204,435)(205,434)(206,433)(207,432)
(208,431)(209,430)(210,429)(211,428)(212,427)(213,373)(214,372)(215,424)
(216,423)(217,422)(218,421)(219,420)(220,419)(221,418)(222,417)(223,416)
(224,415)(225,414)(226,413)(227,412)(228,411)(229,410)(230,409)(231,408)
(232,407)(233,406)(234,405)(235,404)(236,403)(237,402)(238,401)(239,400)
(240,399)(241,398)(242,397)(243,396)(244,395)(245,394)(246,393)(247,392)
(248,391)(249,390)(250,389)(251,388)(252,387)(253,386)(254,385)(255,384)
(256,383)(257,382)(258,381)(259,380)(260,379)(261,378)(262,377)(263,376)
(264,375)(265,374);
poly := sub<Sym(530)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope