include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {534}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {534}*1068
Also Known As : 534-gon, {534}. if this polytope has another name.
Group : SmallGroup(1068,11)
Rank : 2
Schlafli Type : {534}
Number of vertices, edges, etc : 534, 534
Order of s0s1 : 534
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {267}*534
3-fold quotients : {178}*356
6-fold quotients : {89}*178
89-fold quotients : {6}*12
178-fold quotients : {3}*6
267-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 89)( 3, 88)( 4, 87)( 5, 86)( 6, 85)( 7, 84)( 8, 83)( 9, 82)
( 10, 81)( 11, 80)( 12, 79)( 13, 78)( 14, 77)( 15, 76)( 16, 75)( 17, 74)
( 18, 73)( 19, 72)( 20, 71)( 21, 70)( 22, 69)( 23, 68)( 24, 67)( 25, 66)
( 26, 65)( 27, 64)( 28, 63)( 29, 62)( 30, 61)( 31, 60)( 32, 59)( 33, 58)
( 34, 57)( 35, 56)( 36, 55)( 37, 54)( 38, 53)( 39, 52)( 40, 51)( 41, 50)
( 42, 49)( 43, 48)( 44, 47)( 45, 46)( 90,179)( 91,267)( 92,266)( 93,265)
( 94,264)( 95,263)( 96,262)( 97,261)( 98,260)( 99,259)(100,258)(101,257)
(102,256)(103,255)(104,254)(105,253)(106,252)(107,251)(108,250)(109,249)
(110,248)(111,247)(112,246)(113,245)(114,244)(115,243)(116,242)(117,241)
(118,240)(119,239)(120,238)(121,237)(122,236)(123,235)(124,234)(125,233)
(126,232)(127,231)(128,230)(129,229)(130,228)(131,227)(132,226)(133,225)
(134,224)(135,223)(136,222)(137,221)(138,220)(139,219)(140,218)(141,217)
(142,216)(143,215)(144,214)(145,213)(146,212)(147,211)(148,210)(149,209)
(150,208)(151,207)(152,206)(153,205)(154,204)(155,203)(156,202)(157,201)
(158,200)(159,199)(160,198)(161,197)(162,196)(163,195)(164,194)(165,193)
(166,192)(167,191)(168,190)(169,189)(170,188)(171,187)(172,186)(173,185)
(174,184)(175,183)(176,182)(177,181)(178,180)(269,356)(270,355)(271,354)
(272,353)(273,352)(274,351)(275,350)(276,349)(277,348)(278,347)(279,346)
(280,345)(281,344)(282,343)(283,342)(284,341)(285,340)(286,339)(287,338)
(288,337)(289,336)(290,335)(291,334)(292,333)(293,332)(294,331)(295,330)
(296,329)(297,328)(298,327)(299,326)(300,325)(301,324)(302,323)(303,322)
(304,321)(305,320)(306,319)(307,318)(308,317)(309,316)(310,315)(311,314)
(312,313)(357,446)(358,534)(359,533)(360,532)(361,531)(362,530)(363,529)
(364,528)(365,527)(366,526)(367,525)(368,524)(369,523)(370,522)(371,521)
(372,520)(373,519)(374,518)(375,517)(376,516)(377,515)(378,514)(379,513)
(380,512)(381,511)(382,510)(383,509)(384,508)(385,507)(386,506)(387,505)
(388,504)(389,503)(390,502)(391,501)(392,500)(393,499)(394,498)(395,497)
(396,496)(397,495)(398,494)(399,493)(400,492)(401,491)(402,490)(403,489)
(404,488)(405,487)(406,486)(407,485)(408,484)(409,483)(410,482)(411,481)
(412,480)(413,479)(414,478)(415,477)(416,476)(417,475)(418,474)(419,473)
(420,472)(421,471)(422,470)(423,469)(424,468)(425,467)(426,466)(427,465)
(428,464)(429,463)(430,462)(431,461)(432,460)(433,459)(434,458)(435,457)
(436,456)(437,455)(438,454)(439,453)(440,452)(441,451)(442,450)(443,449)
(444,448)(445,447);;
s1 := ( 1,358)( 2,357)( 3,445)( 4,444)( 5,443)( 6,442)( 7,441)( 8,440)
( 9,439)( 10,438)( 11,437)( 12,436)( 13,435)( 14,434)( 15,433)( 16,432)
( 17,431)( 18,430)( 19,429)( 20,428)( 21,427)( 22,426)( 23,425)( 24,424)
( 25,423)( 26,422)( 27,421)( 28,420)( 29,419)( 30,418)( 31,417)( 32,416)
( 33,415)( 34,414)( 35,413)( 36,412)( 37,411)( 38,410)( 39,409)( 40,408)
( 41,407)( 42,406)( 43,405)( 44,404)( 45,403)( 46,402)( 47,401)( 48,400)
( 49,399)( 50,398)( 51,397)( 52,396)( 53,395)( 54,394)( 55,393)( 56,392)
( 57,391)( 58,390)( 59,389)( 60,388)( 61,387)( 62,386)( 63,385)( 64,384)
( 65,383)( 66,382)( 67,381)( 68,380)( 69,379)( 70,378)( 71,377)( 72,376)
( 73,375)( 74,374)( 75,373)( 76,372)( 77,371)( 78,370)( 79,369)( 80,368)
( 81,367)( 82,366)( 83,365)( 84,364)( 85,363)( 86,362)( 87,361)( 88,360)
( 89,359)( 90,269)( 91,268)( 92,356)( 93,355)( 94,354)( 95,353)( 96,352)
( 97,351)( 98,350)( 99,349)(100,348)(101,347)(102,346)(103,345)(104,344)
(105,343)(106,342)(107,341)(108,340)(109,339)(110,338)(111,337)(112,336)
(113,335)(114,334)(115,333)(116,332)(117,331)(118,330)(119,329)(120,328)
(121,327)(122,326)(123,325)(124,324)(125,323)(126,322)(127,321)(128,320)
(129,319)(130,318)(131,317)(132,316)(133,315)(134,314)(135,313)(136,312)
(137,311)(138,310)(139,309)(140,308)(141,307)(142,306)(143,305)(144,304)
(145,303)(146,302)(147,301)(148,300)(149,299)(150,298)(151,297)(152,296)
(153,295)(154,294)(155,293)(156,292)(157,291)(158,290)(159,289)(160,288)
(161,287)(162,286)(163,285)(164,284)(165,283)(166,282)(167,281)(168,280)
(169,279)(170,278)(171,277)(172,276)(173,275)(174,274)(175,273)(176,272)
(177,271)(178,270)(179,447)(180,446)(181,534)(182,533)(183,532)(184,531)
(185,530)(186,529)(187,528)(188,527)(189,526)(190,525)(191,524)(192,523)
(193,522)(194,521)(195,520)(196,519)(197,518)(198,517)(199,516)(200,515)
(201,514)(202,513)(203,512)(204,511)(205,510)(206,509)(207,508)(208,507)
(209,506)(210,505)(211,504)(212,503)(213,502)(214,501)(215,500)(216,499)
(217,498)(218,497)(219,496)(220,495)(221,494)(222,493)(223,492)(224,491)
(225,490)(226,489)(227,488)(228,487)(229,486)(230,485)(231,484)(232,483)
(233,482)(234,481)(235,480)(236,479)(237,478)(238,477)(239,476)(240,475)
(241,474)(242,473)(243,472)(244,471)(245,470)(246,469)(247,468)(248,467)
(249,466)(250,465)(251,464)(252,463)(253,462)(254,461)(255,460)(256,459)
(257,458)(258,457)(259,456)(260,455)(261,454)(262,453)(263,452)(264,451)
(265,450)(266,449)(267,448);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(534)!( 2, 89)( 3, 88)( 4, 87)( 5, 86)( 6, 85)( 7, 84)( 8, 83)
( 9, 82)( 10, 81)( 11, 80)( 12, 79)( 13, 78)( 14, 77)( 15, 76)( 16, 75)
( 17, 74)( 18, 73)( 19, 72)( 20, 71)( 21, 70)( 22, 69)( 23, 68)( 24, 67)
( 25, 66)( 26, 65)( 27, 64)( 28, 63)( 29, 62)( 30, 61)( 31, 60)( 32, 59)
( 33, 58)( 34, 57)( 35, 56)( 36, 55)( 37, 54)( 38, 53)( 39, 52)( 40, 51)
( 41, 50)( 42, 49)( 43, 48)( 44, 47)( 45, 46)( 90,179)( 91,267)( 92,266)
( 93,265)( 94,264)( 95,263)( 96,262)( 97,261)( 98,260)( 99,259)(100,258)
(101,257)(102,256)(103,255)(104,254)(105,253)(106,252)(107,251)(108,250)
(109,249)(110,248)(111,247)(112,246)(113,245)(114,244)(115,243)(116,242)
(117,241)(118,240)(119,239)(120,238)(121,237)(122,236)(123,235)(124,234)
(125,233)(126,232)(127,231)(128,230)(129,229)(130,228)(131,227)(132,226)
(133,225)(134,224)(135,223)(136,222)(137,221)(138,220)(139,219)(140,218)
(141,217)(142,216)(143,215)(144,214)(145,213)(146,212)(147,211)(148,210)
(149,209)(150,208)(151,207)(152,206)(153,205)(154,204)(155,203)(156,202)
(157,201)(158,200)(159,199)(160,198)(161,197)(162,196)(163,195)(164,194)
(165,193)(166,192)(167,191)(168,190)(169,189)(170,188)(171,187)(172,186)
(173,185)(174,184)(175,183)(176,182)(177,181)(178,180)(269,356)(270,355)
(271,354)(272,353)(273,352)(274,351)(275,350)(276,349)(277,348)(278,347)
(279,346)(280,345)(281,344)(282,343)(283,342)(284,341)(285,340)(286,339)
(287,338)(288,337)(289,336)(290,335)(291,334)(292,333)(293,332)(294,331)
(295,330)(296,329)(297,328)(298,327)(299,326)(300,325)(301,324)(302,323)
(303,322)(304,321)(305,320)(306,319)(307,318)(308,317)(309,316)(310,315)
(311,314)(312,313)(357,446)(358,534)(359,533)(360,532)(361,531)(362,530)
(363,529)(364,528)(365,527)(366,526)(367,525)(368,524)(369,523)(370,522)
(371,521)(372,520)(373,519)(374,518)(375,517)(376,516)(377,515)(378,514)
(379,513)(380,512)(381,511)(382,510)(383,509)(384,508)(385,507)(386,506)
(387,505)(388,504)(389,503)(390,502)(391,501)(392,500)(393,499)(394,498)
(395,497)(396,496)(397,495)(398,494)(399,493)(400,492)(401,491)(402,490)
(403,489)(404,488)(405,487)(406,486)(407,485)(408,484)(409,483)(410,482)
(411,481)(412,480)(413,479)(414,478)(415,477)(416,476)(417,475)(418,474)
(419,473)(420,472)(421,471)(422,470)(423,469)(424,468)(425,467)(426,466)
(427,465)(428,464)(429,463)(430,462)(431,461)(432,460)(433,459)(434,458)
(435,457)(436,456)(437,455)(438,454)(439,453)(440,452)(441,451)(442,450)
(443,449)(444,448)(445,447);
s1 := Sym(534)!( 1,358)( 2,357)( 3,445)( 4,444)( 5,443)( 6,442)( 7,441)
( 8,440)( 9,439)( 10,438)( 11,437)( 12,436)( 13,435)( 14,434)( 15,433)
( 16,432)( 17,431)( 18,430)( 19,429)( 20,428)( 21,427)( 22,426)( 23,425)
( 24,424)( 25,423)( 26,422)( 27,421)( 28,420)( 29,419)( 30,418)( 31,417)
( 32,416)( 33,415)( 34,414)( 35,413)( 36,412)( 37,411)( 38,410)( 39,409)
( 40,408)( 41,407)( 42,406)( 43,405)( 44,404)( 45,403)( 46,402)( 47,401)
( 48,400)( 49,399)( 50,398)( 51,397)( 52,396)( 53,395)( 54,394)( 55,393)
( 56,392)( 57,391)( 58,390)( 59,389)( 60,388)( 61,387)( 62,386)( 63,385)
( 64,384)( 65,383)( 66,382)( 67,381)( 68,380)( 69,379)( 70,378)( 71,377)
( 72,376)( 73,375)( 74,374)( 75,373)( 76,372)( 77,371)( 78,370)( 79,369)
( 80,368)( 81,367)( 82,366)( 83,365)( 84,364)( 85,363)( 86,362)( 87,361)
( 88,360)( 89,359)( 90,269)( 91,268)( 92,356)( 93,355)( 94,354)( 95,353)
( 96,352)( 97,351)( 98,350)( 99,349)(100,348)(101,347)(102,346)(103,345)
(104,344)(105,343)(106,342)(107,341)(108,340)(109,339)(110,338)(111,337)
(112,336)(113,335)(114,334)(115,333)(116,332)(117,331)(118,330)(119,329)
(120,328)(121,327)(122,326)(123,325)(124,324)(125,323)(126,322)(127,321)
(128,320)(129,319)(130,318)(131,317)(132,316)(133,315)(134,314)(135,313)
(136,312)(137,311)(138,310)(139,309)(140,308)(141,307)(142,306)(143,305)
(144,304)(145,303)(146,302)(147,301)(148,300)(149,299)(150,298)(151,297)
(152,296)(153,295)(154,294)(155,293)(156,292)(157,291)(158,290)(159,289)
(160,288)(161,287)(162,286)(163,285)(164,284)(165,283)(166,282)(167,281)
(168,280)(169,279)(170,278)(171,277)(172,276)(173,275)(174,274)(175,273)
(176,272)(177,271)(178,270)(179,447)(180,446)(181,534)(182,533)(183,532)
(184,531)(185,530)(186,529)(187,528)(188,527)(189,526)(190,525)(191,524)
(192,523)(193,522)(194,521)(195,520)(196,519)(197,518)(198,517)(199,516)
(200,515)(201,514)(202,513)(203,512)(204,511)(205,510)(206,509)(207,508)
(208,507)(209,506)(210,505)(211,504)(212,503)(213,502)(214,501)(215,500)
(216,499)(217,498)(218,497)(219,496)(220,495)(221,494)(222,493)(223,492)
(224,491)(225,490)(226,489)(227,488)(228,487)(229,486)(230,485)(231,484)
(232,483)(233,482)(234,481)(235,480)(236,479)(237,478)(238,477)(239,476)
(240,475)(241,474)(242,473)(243,472)(244,471)(245,470)(246,469)(247,468)
(248,467)(249,466)(250,465)(251,464)(252,463)(253,462)(254,461)(255,460)
(256,459)(257,458)(258,457)(259,456)(260,455)(261,454)(262,453)(263,452)
(264,451)(265,450)(266,449)(267,448);
poly := sub<Sym(534)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope