include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {34,16}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {34,16}*1088
Also Known As : {34,16|2}. if this polytope has another name.
Group : SmallGroup(1088,968)
Rank : 3
Schlafli Type : {34,16}
Number of vertices, edges, etc : 34, 272, 16
Order of s0s1s2 : 272
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {34,8}*544
4-fold quotients : {34,4}*272
8-fold quotients : {34,2}*136
16-fold quotients : {17,2}*68
17-fold quotients : {2,16}*64
34-fold quotients : {2,8}*32
68-fold quotients : {2,4}*16
136-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,137)( 2,153)( 3,152)( 4,151)( 5,150)( 6,149)( 7,148)( 8,147)
( 9,146)( 10,145)( 11,144)( 12,143)( 13,142)( 14,141)( 15,140)( 16,139)
( 17,138)( 18,154)( 19,170)( 20,169)( 21,168)( 22,167)( 23,166)( 24,165)
( 25,164)( 26,163)( 27,162)( 28,161)( 29,160)( 30,159)( 31,158)( 32,157)
( 33,156)( 34,155)( 35,171)( 36,187)( 37,186)( 38,185)( 39,184)( 40,183)
( 41,182)( 42,181)( 43,180)( 44,179)( 45,178)( 46,177)( 47,176)( 48,175)
( 49,174)( 50,173)( 51,172)( 52,188)( 53,204)( 54,203)( 55,202)( 56,201)
( 57,200)( 58,199)( 59,198)( 60,197)( 61,196)( 62,195)( 63,194)( 64,193)
( 65,192)( 66,191)( 67,190)( 68,189)( 69,205)( 70,221)( 71,220)( 72,219)
( 73,218)( 74,217)( 75,216)( 76,215)( 77,214)( 78,213)( 79,212)( 80,211)
( 81,210)( 82,209)( 83,208)( 84,207)( 85,206)( 86,222)( 87,238)( 88,237)
( 89,236)( 90,235)( 91,234)( 92,233)( 93,232)( 94,231)( 95,230)( 96,229)
( 97,228)( 98,227)( 99,226)(100,225)(101,224)(102,223)(103,239)(104,255)
(105,254)(106,253)(107,252)(108,251)(109,250)(110,249)(111,248)(112,247)
(113,246)(114,245)(115,244)(116,243)(117,242)(118,241)(119,240)(120,256)
(121,272)(122,271)(123,270)(124,269)(125,268)(126,267)(127,266)(128,265)
(129,264)(130,263)(131,262)(132,261)(133,260)(134,259)(135,258)(136,257)
(273,409)(274,425)(275,424)(276,423)(277,422)(278,421)(279,420)(280,419)
(281,418)(282,417)(283,416)(284,415)(285,414)(286,413)(287,412)(288,411)
(289,410)(290,426)(291,442)(292,441)(293,440)(294,439)(295,438)(296,437)
(297,436)(298,435)(299,434)(300,433)(301,432)(302,431)(303,430)(304,429)
(305,428)(306,427)(307,443)(308,459)(309,458)(310,457)(311,456)(312,455)
(313,454)(314,453)(315,452)(316,451)(317,450)(318,449)(319,448)(320,447)
(321,446)(322,445)(323,444)(324,460)(325,476)(326,475)(327,474)(328,473)
(329,472)(330,471)(331,470)(332,469)(333,468)(334,467)(335,466)(336,465)
(337,464)(338,463)(339,462)(340,461)(341,477)(342,493)(343,492)(344,491)
(345,490)(346,489)(347,488)(348,487)(349,486)(350,485)(351,484)(352,483)
(353,482)(354,481)(355,480)(356,479)(357,478)(358,494)(359,510)(360,509)
(361,508)(362,507)(363,506)(364,505)(365,504)(366,503)(367,502)(368,501)
(369,500)(370,499)(371,498)(372,497)(373,496)(374,495)(375,511)(376,527)
(377,526)(378,525)(379,524)(380,523)(381,522)(382,521)(383,520)(384,519)
(385,518)(386,517)(387,516)(388,515)(389,514)(390,513)(391,512)(392,528)
(393,544)(394,543)(395,542)(396,541)(397,540)(398,539)(399,538)(400,537)
(401,536)(402,535)(403,534)(404,533)(405,532)(406,531)(407,530)(408,529);;
s1 := ( 1,138)( 2,137)( 3,153)( 4,152)( 5,151)( 6,150)( 7,149)( 8,148)
( 9,147)( 10,146)( 11,145)( 12,144)( 13,143)( 14,142)( 15,141)( 16,140)
( 17,139)( 18,155)( 19,154)( 20,170)( 21,169)( 22,168)( 23,167)( 24,166)
( 25,165)( 26,164)( 27,163)( 28,162)( 29,161)( 30,160)( 31,159)( 32,158)
( 33,157)( 34,156)( 35,189)( 36,188)( 37,204)( 38,203)( 39,202)( 40,201)
( 41,200)( 42,199)( 43,198)( 44,197)( 45,196)( 46,195)( 47,194)( 48,193)
( 49,192)( 50,191)( 51,190)( 52,172)( 53,171)( 54,187)( 55,186)( 56,185)
( 57,184)( 58,183)( 59,182)( 60,181)( 61,180)( 62,179)( 63,178)( 64,177)
( 65,176)( 66,175)( 67,174)( 68,173)( 69,240)( 70,239)( 71,255)( 72,254)
( 73,253)( 74,252)( 75,251)( 76,250)( 77,249)( 78,248)( 79,247)( 80,246)
( 81,245)( 82,244)( 83,243)( 84,242)( 85,241)( 86,257)( 87,256)( 88,272)
( 89,271)( 90,270)( 91,269)( 92,268)( 93,267)( 94,266)( 95,265)( 96,264)
( 97,263)( 98,262)( 99,261)(100,260)(101,259)(102,258)(103,206)(104,205)
(105,221)(106,220)(107,219)(108,218)(109,217)(110,216)(111,215)(112,214)
(113,213)(114,212)(115,211)(116,210)(117,209)(118,208)(119,207)(120,223)
(121,222)(122,238)(123,237)(124,236)(125,235)(126,234)(127,233)(128,232)
(129,231)(130,230)(131,229)(132,228)(133,227)(134,226)(135,225)(136,224)
(273,478)(274,477)(275,493)(276,492)(277,491)(278,490)(279,489)(280,488)
(281,487)(282,486)(283,485)(284,484)(285,483)(286,482)(287,481)(288,480)
(289,479)(290,495)(291,494)(292,510)(293,509)(294,508)(295,507)(296,506)
(297,505)(298,504)(299,503)(300,502)(301,501)(302,500)(303,499)(304,498)
(305,497)(306,496)(307,529)(308,528)(309,544)(310,543)(311,542)(312,541)
(313,540)(314,539)(315,538)(316,537)(317,536)(318,535)(319,534)(320,533)
(321,532)(322,531)(323,530)(324,512)(325,511)(326,527)(327,526)(328,525)
(329,524)(330,523)(331,522)(332,521)(333,520)(334,519)(335,518)(336,517)
(337,516)(338,515)(339,514)(340,513)(341,410)(342,409)(343,425)(344,424)
(345,423)(346,422)(347,421)(348,420)(349,419)(350,418)(351,417)(352,416)
(353,415)(354,414)(355,413)(356,412)(357,411)(358,427)(359,426)(360,442)
(361,441)(362,440)(363,439)(364,438)(365,437)(366,436)(367,435)(368,434)
(369,433)(370,432)(371,431)(372,430)(373,429)(374,428)(375,461)(376,460)
(377,476)(378,475)(379,474)(380,473)(381,472)(382,471)(383,470)(384,469)
(385,468)(386,467)(387,466)(388,465)(389,464)(390,463)(391,462)(392,444)
(393,443)(394,459)(395,458)(396,457)(397,456)(398,455)(399,454)(400,453)
(401,452)(402,451)(403,450)(404,449)(405,448)(406,447)(407,446)(408,445);;
s2 := ( 1,273)( 2,274)( 3,275)( 4,276)( 5,277)( 6,278)( 7,279)( 8,280)
( 9,281)( 10,282)( 11,283)( 12,284)( 13,285)( 14,286)( 15,287)( 16,288)
( 17,289)( 18,290)( 19,291)( 20,292)( 21,293)( 22,294)( 23,295)( 24,296)
( 25,297)( 26,298)( 27,299)( 28,300)( 29,301)( 30,302)( 31,303)( 32,304)
( 33,305)( 34,306)( 35,324)( 36,325)( 37,326)( 38,327)( 39,328)( 40,329)
( 41,330)( 42,331)( 43,332)( 44,333)( 45,334)( 46,335)( 47,336)( 48,337)
( 49,338)( 50,339)( 51,340)( 52,307)( 53,308)( 54,309)( 55,310)( 56,311)
( 57,312)( 58,313)( 59,314)( 60,315)( 61,316)( 62,317)( 63,318)( 64,319)
( 65,320)( 66,321)( 67,322)( 68,323)( 69,375)( 70,376)( 71,377)( 72,378)
( 73,379)( 74,380)( 75,381)( 76,382)( 77,383)( 78,384)( 79,385)( 80,386)
( 81,387)( 82,388)( 83,389)( 84,390)( 85,391)( 86,392)( 87,393)( 88,394)
( 89,395)( 90,396)( 91,397)( 92,398)( 93,399)( 94,400)( 95,401)( 96,402)
( 97,403)( 98,404)( 99,405)(100,406)(101,407)(102,408)(103,341)(104,342)
(105,343)(106,344)(107,345)(108,346)(109,347)(110,348)(111,349)(112,350)
(113,351)(114,352)(115,353)(116,354)(117,355)(118,356)(119,357)(120,358)
(121,359)(122,360)(123,361)(124,362)(125,363)(126,364)(127,365)(128,366)
(129,367)(130,368)(131,369)(132,370)(133,371)(134,372)(135,373)(136,374)
(137,409)(138,410)(139,411)(140,412)(141,413)(142,414)(143,415)(144,416)
(145,417)(146,418)(147,419)(148,420)(149,421)(150,422)(151,423)(152,424)
(153,425)(154,426)(155,427)(156,428)(157,429)(158,430)(159,431)(160,432)
(161,433)(162,434)(163,435)(164,436)(165,437)(166,438)(167,439)(168,440)
(169,441)(170,442)(171,460)(172,461)(173,462)(174,463)(175,464)(176,465)
(177,466)(178,467)(179,468)(180,469)(181,470)(182,471)(183,472)(184,473)
(185,474)(186,475)(187,476)(188,443)(189,444)(190,445)(191,446)(192,447)
(193,448)(194,449)(195,450)(196,451)(197,452)(198,453)(199,454)(200,455)
(201,456)(202,457)(203,458)(204,459)(205,511)(206,512)(207,513)(208,514)
(209,515)(210,516)(211,517)(212,518)(213,519)(214,520)(215,521)(216,522)
(217,523)(218,524)(219,525)(220,526)(221,527)(222,528)(223,529)(224,530)
(225,531)(226,532)(227,533)(228,534)(229,535)(230,536)(231,537)(232,538)
(233,539)(234,540)(235,541)(236,542)(237,543)(238,544)(239,477)(240,478)
(241,479)(242,480)(243,481)(244,482)(245,483)(246,484)(247,485)(248,486)
(249,487)(250,488)(251,489)(252,490)(253,491)(254,492)(255,493)(256,494)
(257,495)(258,496)(259,497)(260,498)(261,499)(262,500)(263,501)(264,502)
(265,503)(266,504)(267,505)(268,506)(269,507)(270,508)(271,509)(272,510);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(544)!( 1,137)( 2,153)( 3,152)( 4,151)( 5,150)( 6,149)( 7,148)
( 8,147)( 9,146)( 10,145)( 11,144)( 12,143)( 13,142)( 14,141)( 15,140)
( 16,139)( 17,138)( 18,154)( 19,170)( 20,169)( 21,168)( 22,167)( 23,166)
( 24,165)( 25,164)( 26,163)( 27,162)( 28,161)( 29,160)( 30,159)( 31,158)
( 32,157)( 33,156)( 34,155)( 35,171)( 36,187)( 37,186)( 38,185)( 39,184)
( 40,183)( 41,182)( 42,181)( 43,180)( 44,179)( 45,178)( 46,177)( 47,176)
( 48,175)( 49,174)( 50,173)( 51,172)( 52,188)( 53,204)( 54,203)( 55,202)
( 56,201)( 57,200)( 58,199)( 59,198)( 60,197)( 61,196)( 62,195)( 63,194)
( 64,193)( 65,192)( 66,191)( 67,190)( 68,189)( 69,205)( 70,221)( 71,220)
( 72,219)( 73,218)( 74,217)( 75,216)( 76,215)( 77,214)( 78,213)( 79,212)
( 80,211)( 81,210)( 82,209)( 83,208)( 84,207)( 85,206)( 86,222)( 87,238)
( 88,237)( 89,236)( 90,235)( 91,234)( 92,233)( 93,232)( 94,231)( 95,230)
( 96,229)( 97,228)( 98,227)( 99,226)(100,225)(101,224)(102,223)(103,239)
(104,255)(105,254)(106,253)(107,252)(108,251)(109,250)(110,249)(111,248)
(112,247)(113,246)(114,245)(115,244)(116,243)(117,242)(118,241)(119,240)
(120,256)(121,272)(122,271)(123,270)(124,269)(125,268)(126,267)(127,266)
(128,265)(129,264)(130,263)(131,262)(132,261)(133,260)(134,259)(135,258)
(136,257)(273,409)(274,425)(275,424)(276,423)(277,422)(278,421)(279,420)
(280,419)(281,418)(282,417)(283,416)(284,415)(285,414)(286,413)(287,412)
(288,411)(289,410)(290,426)(291,442)(292,441)(293,440)(294,439)(295,438)
(296,437)(297,436)(298,435)(299,434)(300,433)(301,432)(302,431)(303,430)
(304,429)(305,428)(306,427)(307,443)(308,459)(309,458)(310,457)(311,456)
(312,455)(313,454)(314,453)(315,452)(316,451)(317,450)(318,449)(319,448)
(320,447)(321,446)(322,445)(323,444)(324,460)(325,476)(326,475)(327,474)
(328,473)(329,472)(330,471)(331,470)(332,469)(333,468)(334,467)(335,466)
(336,465)(337,464)(338,463)(339,462)(340,461)(341,477)(342,493)(343,492)
(344,491)(345,490)(346,489)(347,488)(348,487)(349,486)(350,485)(351,484)
(352,483)(353,482)(354,481)(355,480)(356,479)(357,478)(358,494)(359,510)
(360,509)(361,508)(362,507)(363,506)(364,505)(365,504)(366,503)(367,502)
(368,501)(369,500)(370,499)(371,498)(372,497)(373,496)(374,495)(375,511)
(376,527)(377,526)(378,525)(379,524)(380,523)(381,522)(382,521)(383,520)
(384,519)(385,518)(386,517)(387,516)(388,515)(389,514)(390,513)(391,512)
(392,528)(393,544)(394,543)(395,542)(396,541)(397,540)(398,539)(399,538)
(400,537)(401,536)(402,535)(403,534)(404,533)(405,532)(406,531)(407,530)
(408,529);
s1 := Sym(544)!( 1,138)( 2,137)( 3,153)( 4,152)( 5,151)( 6,150)( 7,149)
( 8,148)( 9,147)( 10,146)( 11,145)( 12,144)( 13,143)( 14,142)( 15,141)
( 16,140)( 17,139)( 18,155)( 19,154)( 20,170)( 21,169)( 22,168)( 23,167)
( 24,166)( 25,165)( 26,164)( 27,163)( 28,162)( 29,161)( 30,160)( 31,159)
( 32,158)( 33,157)( 34,156)( 35,189)( 36,188)( 37,204)( 38,203)( 39,202)
( 40,201)( 41,200)( 42,199)( 43,198)( 44,197)( 45,196)( 46,195)( 47,194)
( 48,193)( 49,192)( 50,191)( 51,190)( 52,172)( 53,171)( 54,187)( 55,186)
( 56,185)( 57,184)( 58,183)( 59,182)( 60,181)( 61,180)( 62,179)( 63,178)
( 64,177)( 65,176)( 66,175)( 67,174)( 68,173)( 69,240)( 70,239)( 71,255)
( 72,254)( 73,253)( 74,252)( 75,251)( 76,250)( 77,249)( 78,248)( 79,247)
( 80,246)( 81,245)( 82,244)( 83,243)( 84,242)( 85,241)( 86,257)( 87,256)
( 88,272)( 89,271)( 90,270)( 91,269)( 92,268)( 93,267)( 94,266)( 95,265)
( 96,264)( 97,263)( 98,262)( 99,261)(100,260)(101,259)(102,258)(103,206)
(104,205)(105,221)(106,220)(107,219)(108,218)(109,217)(110,216)(111,215)
(112,214)(113,213)(114,212)(115,211)(116,210)(117,209)(118,208)(119,207)
(120,223)(121,222)(122,238)(123,237)(124,236)(125,235)(126,234)(127,233)
(128,232)(129,231)(130,230)(131,229)(132,228)(133,227)(134,226)(135,225)
(136,224)(273,478)(274,477)(275,493)(276,492)(277,491)(278,490)(279,489)
(280,488)(281,487)(282,486)(283,485)(284,484)(285,483)(286,482)(287,481)
(288,480)(289,479)(290,495)(291,494)(292,510)(293,509)(294,508)(295,507)
(296,506)(297,505)(298,504)(299,503)(300,502)(301,501)(302,500)(303,499)
(304,498)(305,497)(306,496)(307,529)(308,528)(309,544)(310,543)(311,542)
(312,541)(313,540)(314,539)(315,538)(316,537)(317,536)(318,535)(319,534)
(320,533)(321,532)(322,531)(323,530)(324,512)(325,511)(326,527)(327,526)
(328,525)(329,524)(330,523)(331,522)(332,521)(333,520)(334,519)(335,518)
(336,517)(337,516)(338,515)(339,514)(340,513)(341,410)(342,409)(343,425)
(344,424)(345,423)(346,422)(347,421)(348,420)(349,419)(350,418)(351,417)
(352,416)(353,415)(354,414)(355,413)(356,412)(357,411)(358,427)(359,426)
(360,442)(361,441)(362,440)(363,439)(364,438)(365,437)(366,436)(367,435)
(368,434)(369,433)(370,432)(371,431)(372,430)(373,429)(374,428)(375,461)
(376,460)(377,476)(378,475)(379,474)(380,473)(381,472)(382,471)(383,470)
(384,469)(385,468)(386,467)(387,466)(388,465)(389,464)(390,463)(391,462)
(392,444)(393,443)(394,459)(395,458)(396,457)(397,456)(398,455)(399,454)
(400,453)(401,452)(402,451)(403,450)(404,449)(405,448)(406,447)(407,446)
(408,445);
s2 := Sym(544)!( 1,273)( 2,274)( 3,275)( 4,276)( 5,277)( 6,278)( 7,279)
( 8,280)( 9,281)( 10,282)( 11,283)( 12,284)( 13,285)( 14,286)( 15,287)
( 16,288)( 17,289)( 18,290)( 19,291)( 20,292)( 21,293)( 22,294)( 23,295)
( 24,296)( 25,297)( 26,298)( 27,299)( 28,300)( 29,301)( 30,302)( 31,303)
( 32,304)( 33,305)( 34,306)( 35,324)( 36,325)( 37,326)( 38,327)( 39,328)
( 40,329)( 41,330)( 42,331)( 43,332)( 44,333)( 45,334)( 46,335)( 47,336)
( 48,337)( 49,338)( 50,339)( 51,340)( 52,307)( 53,308)( 54,309)( 55,310)
( 56,311)( 57,312)( 58,313)( 59,314)( 60,315)( 61,316)( 62,317)( 63,318)
( 64,319)( 65,320)( 66,321)( 67,322)( 68,323)( 69,375)( 70,376)( 71,377)
( 72,378)( 73,379)( 74,380)( 75,381)( 76,382)( 77,383)( 78,384)( 79,385)
( 80,386)( 81,387)( 82,388)( 83,389)( 84,390)( 85,391)( 86,392)( 87,393)
( 88,394)( 89,395)( 90,396)( 91,397)( 92,398)( 93,399)( 94,400)( 95,401)
( 96,402)( 97,403)( 98,404)( 99,405)(100,406)(101,407)(102,408)(103,341)
(104,342)(105,343)(106,344)(107,345)(108,346)(109,347)(110,348)(111,349)
(112,350)(113,351)(114,352)(115,353)(116,354)(117,355)(118,356)(119,357)
(120,358)(121,359)(122,360)(123,361)(124,362)(125,363)(126,364)(127,365)
(128,366)(129,367)(130,368)(131,369)(132,370)(133,371)(134,372)(135,373)
(136,374)(137,409)(138,410)(139,411)(140,412)(141,413)(142,414)(143,415)
(144,416)(145,417)(146,418)(147,419)(148,420)(149,421)(150,422)(151,423)
(152,424)(153,425)(154,426)(155,427)(156,428)(157,429)(158,430)(159,431)
(160,432)(161,433)(162,434)(163,435)(164,436)(165,437)(166,438)(167,439)
(168,440)(169,441)(170,442)(171,460)(172,461)(173,462)(174,463)(175,464)
(176,465)(177,466)(178,467)(179,468)(180,469)(181,470)(182,471)(183,472)
(184,473)(185,474)(186,475)(187,476)(188,443)(189,444)(190,445)(191,446)
(192,447)(193,448)(194,449)(195,450)(196,451)(197,452)(198,453)(199,454)
(200,455)(201,456)(202,457)(203,458)(204,459)(205,511)(206,512)(207,513)
(208,514)(209,515)(210,516)(211,517)(212,518)(213,519)(214,520)(215,521)
(216,522)(217,523)(218,524)(219,525)(220,526)(221,527)(222,528)(223,529)
(224,530)(225,531)(226,532)(227,533)(228,534)(229,535)(230,536)(231,537)
(232,538)(233,539)(234,540)(235,541)(236,542)(237,543)(238,544)(239,477)
(240,478)(241,479)(242,480)(243,481)(244,482)(245,483)(246,484)(247,485)
(248,486)(249,487)(250,488)(251,489)(252,490)(253,491)(254,492)(255,493)
(256,494)(257,495)(258,496)(259,497)(260,498)(261,499)(262,500)(263,501)
(264,502)(265,503)(266,504)(267,505)(268,506)(269,507)(270,508)(271,509)
(272,510);
poly := sub<Sym(544)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope