Polytope of Type {548}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {548}*1096
Also Known As : 548-gon, {548}. if this polytope has another name.
Group : SmallGroup(1096,10)
Rank : 2
Schlafli Type : {548}
Number of vertices, edges, etc : 548, 548
Order of s0s1 : 548
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {274}*548
   4-fold quotients : {137}*274
   137-fold quotients : {4}*8
   274-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,137)(  3,136)(  4,135)(  5,134)(  6,133)(  7,132)(  8,131)(  9,130)
( 10,129)( 11,128)( 12,127)( 13,126)( 14,125)( 15,124)( 16,123)( 17,122)
( 18,121)( 19,120)( 20,119)( 21,118)( 22,117)( 23,116)( 24,115)( 25,114)
( 26,113)( 27,112)( 28,111)( 29,110)( 30,109)( 31,108)( 32,107)( 33,106)
( 34,105)( 35,104)( 36,103)( 37,102)( 38,101)( 39,100)( 40, 99)( 41, 98)
( 42, 97)( 43, 96)( 44, 95)( 45, 94)( 46, 93)( 47, 92)( 48, 91)( 49, 90)
( 50, 89)( 51, 88)( 52, 87)( 53, 86)( 54, 85)( 55, 84)( 56, 83)( 57, 82)
( 58, 81)( 59, 80)( 60, 79)( 61, 78)( 62, 77)( 63, 76)( 64, 75)( 65, 74)
( 66, 73)( 67, 72)( 68, 71)( 69, 70)(139,274)(140,273)(141,272)(142,271)
(143,270)(144,269)(145,268)(146,267)(147,266)(148,265)(149,264)(150,263)
(151,262)(152,261)(153,260)(154,259)(155,258)(156,257)(157,256)(158,255)
(159,254)(160,253)(161,252)(162,251)(163,250)(164,249)(165,248)(166,247)
(167,246)(168,245)(169,244)(170,243)(171,242)(172,241)(173,240)(174,239)
(175,238)(176,237)(177,236)(178,235)(179,234)(180,233)(181,232)(182,231)
(183,230)(184,229)(185,228)(186,227)(187,226)(188,225)(189,224)(190,223)
(191,222)(192,221)(193,220)(194,219)(195,218)(196,217)(197,216)(198,215)
(199,214)(200,213)(201,212)(202,211)(203,210)(204,209)(205,208)(206,207)
(275,412)(276,548)(277,547)(278,546)(279,545)(280,544)(281,543)(282,542)
(283,541)(284,540)(285,539)(286,538)(287,537)(288,536)(289,535)(290,534)
(291,533)(292,532)(293,531)(294,530)(295,529)(296,528)(297,527)(298,526)
(299,525)(300,524)(301,523)(302,522)(303,521)(304,520)(305,519)(306,518)
(307,517)(308,516)(309,515)(310,514)(311,513)(312,512)(313,511)(314,510)
(315,509)(316,508)(317,507)(318,506)(319,505)(320,504)(321,503)(322,502)
(323,501)(324,500)(325,499)(326,498)(327,497)(328,496)(329,495)(330,494)
(331,493)(332,492)(333,491)(334,490)(335,489)(336,488)(337,487)(338,486)
(339,485)(340,484)(341,483)(342,482)(343,481)(344,480)(345,479)(346,478)
(347,477)(348,476)(349,475)(350,474)(351,473)(352,472)(353,471)(354,470)
(355,469)(356,468)(357,467)(358,466)(359,465)(360,464)(361,463)(362,462)
(363,461)(364,460)(365,459)(366,458)(367,457)(368,456)(369,455)(370,454)
(371,453)(372,452)(373,451)(374,450)(375,449)(376,448)(377,447)(378,446)
(379,445)(380,444)(381,443)(382,442)(383,441)(384,440)(385,439)(386,438)
(387,437)(388,436)(389,435)(390,434)(391,433)(392,432)(393,431)(394,430)
(395,429)(396,428)(397,427)(398,426)(399,425)(400,424)(401,423)(402,422)
(403,421)(404,420)(405,419)(406,418)(407,417)(408,416)(409,415)(410,414)
(411,413);;
s1 := (  1,276)(  2,275)(  3,411)(  4,410)(  5,409)(  6,408)(  7,407)(  8,406)
(  9,405)( 10,404)( 11,403)( 12,402)( 13,401)( 14,400)( 15,399)( 16,398)
( 17,397)( 18,396)( 19,395)( 20,394)( 21,393)( 22,392)( 23,391)( 24,390)
( 25,389)( 26,388)( 27,387)( 28,386)( 29,385)( 30,384)( 31,383)( 32,382)
( 33,381)( 34,380)( 35,379)( 36,378)( 37,377)( 38,376)( 39,375)( 40,374)
( 41,373)( 42,372)( 43,371)( 44,370)( 45,369)( 46,368)( 47,367)( 48,366)
( 49,365)( 50,364)( 51,363)( 52,362)( 53,361)( 54,360)( 55,359)( 56,358)
( 57,357)( 58,356)( 59,355)( 60,354)( 61,353)( 62,352)( 63,351)( 64,350)
( 65,349)( 66,348)( 67,347)( 68,346)( 69,345)( 70,344)( 71,343)( 72,342)
( 73,341)( 74,340)( 75,339)( 76,338)( 77,337)( 78,336)( 79,335)( 80,334)
( 81,333)( 82,332)( 83,331)( 84,330)( 85,329)( 86,328)( 87,327)( 88,326)
( 89,325)( 90,324)( 91,323)( 92,322)( 93,321)( 94,320)( 95,319)( 96,318)
( 97,317)( 98,316)( 99,315)(100,314)(101,313)(102,312)(103,311)(104,310)
(105,309)(106,308)(107,307)(108,306)(109,305)(110,304)(111,303)(112,302)
(113,301)(114,300)(115,299)(116,298)(117,297)(118,296)(119,295)(120,294)
(121,293)(122,292)(123,291)(124,290)(125,289)(126,288)(127,287)(128,286)
(129,285)(130,284)(131,283)(132,282)(133,281)(134,280)(135,279)(136,278)
(137,277)(138,413)(139,412)(140,548)(141,547)(142,546)(143,545)(144,544)
(145,543)(146,542)(147,541)(148,540)(149,539)(150,538)(151,537)(152,536)
(153,535)(154,534)(155,533)(156,532)(157,531)(158,530)(159,529)(160,528)
(161,527)(162,526)(163,525)(164,524)(165,523)(166,522)(167,521)(168,520)
(169,519)(170,518)(171,517)(172,516)(173,515)(174,514)(175,513)(176,512)
(177,511)(178,510)(179,509)(180,508)(181,507)(182,506)(183,505)(184,504)
(185,503)(186,502)(187,501)(188,500)(189,499)(190,498)(191,497)(192,496)
(193,495)(194,494)(195,493)(196,492)(197,491)(198,490)(199,489)(200,488)
(201,487)(202,486)(203,485)(204,484)(205,483)(206,482)(207,481)(208,480)
(209,479)(210,478)(211,477)(212,476)(213,475)(214,474)(215,473)(216,472)
(217,471)(218,470)(219,469)(220,468)(221,467)(222,466)(223,465)(224,464)
(225,463)(226,462)(227,461)(228,460)(229,459)(230,458)(231,457)(232,456)
(233,455)(234,454)(235,453)(236,452)(237,451)(238,450)(239,449)(240,448)
(241,447)(242,446)(243,445)(244,444)(245,443)(246,442)(247,441)(248,440)
(249,439)(250,438)(251,437)(252,436)(253,435)(254,434)(255,433)(256,432)
(257,431)(258,430)(259,429)(260,428)(261,427)(262,426)(263,425)(264,424)
(265,423)(266,422)(267,421)(268,420)(269,419)(270,418)(271,417)(272,416)
(273,415)(274,414);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(548)!(  2,137)(  3,136)(  4,135)(  5,134)(  6,133)(  7,132)(  8,131)
(  9,130)( 10,129)( 11,128)( 12,127)( 13,126)( 14,125)( 15,124)( 16,123)
( 17,122)( 18,121)( 19,120)( 20,119)( 21,118)( 22,117)( 23,116)( 24,115)
( 25,114)( 26,113)( 27,112)( 28,111)( 29,110)( 30,109)( 31,108)( 32,107)
( 33,106)( 34,105)( 35,104)( 36,103)( 37,102)( 38,101)( 39,100)( 40, 99)
( 41, 98)( 42, 97)( 43, 96)( 44, 95)( 45, 94)( 46, 93)( 47, 92)( 48, 91)
( 49, 90)( 50, 89)( 51, 88)( 52, 87)( 53, 86)( 54, 85)( 55, 84)( 56, 83)
( 57, 82)( 58, 81)( 59, 80)( 60, 79)( 61, 78)( 62, 77)( 63, 76)( 64, 75)
( 65, 74)( 66, 73)( 67, 72)( 68, 71)( 69, 70)(139,274)(140,273)(141,272)
(142,271)(143,270)(144,269)(145,268)(146,267)(147,266)(148,265)(149,264)
(150,263)(151,262)(152,261)(153,260)(154,259)(155,258)(156,257)(157,256)
(158,255)(159,254)(160,253)(161,252)(162,251)(163,250)(164,249)(165,248)
(166,247)(167,246)(168,245)(169,244)(170,243)(171,242)(172,241)(173,240)
(174,239)(175,238)(176,237)(177,236)(178,235)(179,234)(180,233)(181,232)
(182,231)(183,230)(184,229)(185,228)(186,227)(187,226)(188,225)(189,224)
(190,223)(191,222)(192,221)(193,220)(194,219)(195,218)(196,217)(197,216)
(198,215)(199,214)(200,213)(201,212)(202,211)(203,210)(204,209)(205,208)
(206,207)(275,412)(276,548)(277,547)(278,546)(279,545)(280,544)(281,543)
(282,542)(283,541)(284,540)(285,539)(286,538)(287,537)(288,536)(289,535)
(290,534)(291,533)(292,532)(293,531)(294,530)(295,529)(296,528)(297,527)
(298,526)(299,525)(300,524)(301,523)(302,522)(303,521)(304,520)(305,519)
(306,518)(307,517)(308,516)(309,515)(310,514)(311,513)(312,512)(313,511)
(314,510)(315,509)(316,508)(317,507)(318,506)(319,505)(320,504)(321,503)
(322,502)(323,501)(324,500)(325,499)(326,498)(327,497)(328,496)(329,495)
(330,494)(331,493)(332,492)(333,491)(334,490)(335,489)(336,488)(337,487)
(338,486)(339,485)(340,484)(341,483)(342,482)(343,481)(344,480)(345,479)
(346,478)(347,477)(348,476)(349,475)(350,474)(351,473)(352,472)(353,471)
(354,470)(355,469)(356,468)(357,467)(358,466)(359,465)(360,464)(361,463)
(362,462)(363,461)(364,460)(365,459)(366,458)(367,457)(368,456)(369,455)
(370,454)(371,453)(372,452)(373,451)(374,450)(375,449)(376,448)(377,447)
(378,446)(379,445)(380,444)(381,443)(382,442)(383,441)(384,440)(385,439)
(386,438)(387,437)(388,436)(389,435)(390,434)(391,433)(392,432)(393,431)
(394,430)(395,429)(396,428)(397,427)(398,426)(399,425)(400,424)(401,423)
(402,422)(403,421)(404,420)(405,419)(406,418)(407,417)(408,416)(409,415)
(410,414)(411,413);
s1 := Sym(548)!(  1,276)(  2,275)(  3,411)(  4,410)(  5,409)(  6,408)(  7,407)
(  8,406)(  9,405)( 10,404)( 11,403)( 12,402)( 13,401)( 14,400)( 15,399)
( 16,398)( 17,397)( 18,396)( 19,395)( 20,394)( 21,393)( 22,392)( 23,391)
( 24,390)( 25,389)( 26,388)( 27,387)( 28,386)( 29,385)( 30,384)( 31,383)
( 32,382)( 33,381)( 34,380)( 35,379)( 36,378)( 37,377)( 38,376)( 39,375)
( 40,374)( 41,373)( 42,372)( 43,371)( 44,370)( 45,369)( 46,368)( 47,367)
( 48,366)( 49,365)( 50,364)( 51,363)( 52,362)( 53,361)( 54,360)( 55,359)
( 56,358)( 57,357)( 58,356)( 59,355)( 60,354)( 61,353)( 62,352)( 63,351)
( 64,350)( 65,349)( 66,348)( 67,347)( 68,346)( 69,345)( 70,344)( 71,343)
( 72,342)( 73,341)( 74,340)( 75,339)( 76,338)( 77,337)( 78,336)( 79,335)
( 80,334)( 81,333)( 82,332)( 83,331)( 84,330)( 85,329)( 86,328)( 87,327)
( 88,326)( 89,325)( 90,324)( 91,323)( 92,322)( 93,321)( 94,320)( 95,319)
( 96,318)( 97,317)( 98,316)( 99,315)(100,314)(101,313)(102,312)(103,311)
(104,310)(105,309)(106,308)(107,307)(108,306)(109,305)(110,304)(111,303)
(112,302)(113,301)(114,300)(115,299)(116,298)(117,297)(118,296)(119,295)
(120,294)(121,293)(122,292)(123,291)(124,290)(125,289)(126,288)(127,287)
(128,286)(129,285)(130,284)(131,283)(132,282)(133,281)(134,280)(135,279)
(136,278)(137,277)(138,413)(139,412)(140,548)(141,547)(142,546)(143,545)
(144,544)(145,543)(146,542)(147,541)(148,540)(149,539)(150,538)(151,537)
(152,536)(153,535)(154,534)(155,533)(156,532)(157,531)(158,530)(159,529)
(160,528)(161,527)(162,526)(163,525)(164,524)(165,523)(166,522)(167,521)
(168,520)(169,519)(170,518)(171,517)(172,516)(173,515)(174,514)(175,513)
(176,512)(177,511)(178,510)(179,509)(180,508)(181,507)(182,506)(183,505)
(184,504)(185,503)(186,502)(187,501)(188,500)(189,499)(190,498)(191,497)
(192,496)(193,495)(194,494)(195,493)(196,492)(197,491)(198,490)(199,489)
(200,488)(201,487)(202,486)(203,485)(204,484)(205,483)(206,482)(207,481)
(208,480)(209,479)(210,478)(211,477)(212,476)(213,475)(214,474)(215,473)
(216,472)(217,471)(218,470)(219,469)(220,468)(221,467)(222,466)(223,465)
(224,464)(225,463)(226,462)(227,461)(228,460)(229,459)(230,458)(231,457)
(232,456)(233,455)(234,454)(235,453)(236,452)(237,451)(238,450)(239,449)
(240,448)(241,447)(242,446)(243,445)(244,444)(245,443)(246,442)(247,441)
(248,440)(249,439)(250,438)(251,437)(252,436)(253,435)(254,434)(255,433)
(256,432)(257,431)(258,430)(259,429)(260,428)(261,427)(262,426)(263,425)
(264,424)(265,423)(266,422)(267,421)(268,420)(269,419)(270,418)(271,417)
(272,416)(273,415)(274,414);
poly := sub<Sym(548)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope