Polytope of Type {558}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {558}*1116
Also Known As : 558-gon, {558}. if this polytope has another name.
Group : SmallGroup(1116,14)
Rank : 2
Schlafli Type : {558}
Number of vertices, edges, etc : 558, 558
Order of s0s1 : 558
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {279}*558
   3-fold quotients : {186}*372
   6-fold quotients : {93}*186
   9-fold quotients : {62}*124
   18-fold quotients : {31}*62
   31-fold quotients : {18}*36
   62-fold quotients : {9}*18
   93-fold quotients : {6}*12
   186-fold quotients : {3}*6
   279-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4, 91)(  5, 93)(  6, 92)(  7, 88)(  8, 90)(  9, 89)( 10, 85)
( 11, 87)( 12, 86)( 13, 82)( 14, 84)( 15, 83)( 16, 79)( 17, 81)( 18, 80)
( 19, 76)( 20, 78)( 21, 77)( 22, 73)( 23, 75)( 24, 74)( 25, 70)( 26, 72)
( 27, 71)( 28, 67)( 29, 69)( 30, 68)( 31, 64)( 32, 66)( 33, 65)( 34, 61)
( 35, 63)( 36, 62)( 37, 58)( 38, 60)( 39, 59)( 40, 55)( 41, 57)( 42, 56)
( 43, 52)( 44, 54)( 45, 53)( 46, 49)( 47, 51)( 48, 50)( 94,188)( 95,187)
( 96,189)( 97,278)( 98,277)( 99,279)(100,275)(101,274)(102,276)(103,272)
(104,271)(105,273)(106,269)(107,268)(108,270)(109,266)(110,265)(111,267)
(112,263)(113,262)(114,264)(115,260)(116,259)(117,261)(118,257)(119,256)
(120,258)(121,254)(122,253)(123,255)(124,251)(125,250)(126,252)(127,248)
(128,247)(129,249)(130,245)(131,244)(132,246)(133,242)(134,241)(135,243)
(136,239)(137,238)(138,240)(139,236)(140,235)(141,237)(142,233)(143,232)
(144,234)(145,230)(146,229)(147,231)(148,227)(149,226)(150,228)(151,224)
(152,223)(153,225)(154,221)(155,220)(156,222)(157,218)(158,217)(159,219)
(160,215)(161,214)(162,216)(163,212)(164,211)(165,213)(166,209)(167,208)
(168,210)(169,206)(170,205)(171,207)(172,203)(173,202)(174,204)(175,200)
(176,199)(177,201)(178,197)(179,196)(180,198)(181,194)(182,193)(183,195)
(184,191)(185,190)(186,192)(281,282)(283,370)(284,372)(285,371)(286,367)
(287,369)(288,368)(289,364)(290,366)(291,365)(292,361)(293,363)(294,362)
(295,358)(296,360)(297,359)(298,355)(299,357)(300,356)(301,352)(302,354)
(303,353)(304,349)(305,351)(306,350)(307,346)(308,348)(309,347)(310,343)
(311,345)(312,344)(313,340)(314,342)(315,341)(316,337)(317,339)(318,338)
(319,334)(320,336)(321,335)(322,331)(323,333)(324,332)(325,328)(326,330)
(327,329)(373,467)(374,466)(375,468)(376,557)(377,556)(378,558)(379,554)
(380,553)(381,555)(382,551)(383,550)(384,552)(385,548)(386,547)(387,549)
(388,545)(389,544)(390,546)(391,542)(392,541)(393,543)(394,539)(395,538)
(396,540)(397,536)(398,535)(399,537)(400,533)(401,532)(402,534)(403,530)
(404,529)(405,531)(406,527)(407,526)(408,528)(409,524)(410,523)(411,525)
(412,521)(413,520)(414,522)(415,518)(416,517)(417,519)(418,515)(419,514)
(420,516)(421,512)(422,511)(423,513)(424,509)(425,508)(426,510)(427,506)
(428,505)(429,507)(430,503)(431,502)(432,504)(433,500)(434,499)(435,501)
(436,497)(437,496)(438,498)(439,494)(440,493)(441,495)(442,491)(443,490)
(444,492)(445,488)(446,487)(447,489)(448,485)(449,484)(450,486)(451,482)
(452,481)(453,483)(454,479)(455,478)(456,480)(457,476)(458,475)(459,477)
(460,473)(461,472)(462,474)(463,470)(464,469)(465,471);;
s1 := (  1,376)(  2,378)(  3,377)(  4,373)(  5,375)(  6,374)(  7,463)(  8,465)
(  9,464)( 10,460)( 11,462)( 12,461)( 13,457)( 14,459)( 15,458)( 16,454)
( 17,456)( 18,455)( 19,451)( 20,453)( 21,452)( 22,448)( 23,450)( 24,449)
( 25,445)( 26,447)( 27,446)( 28,442)( 29,444)( 30,443)( 31,439)( 32,441)
( 33,440)( 34,436)( 35,438)( 36,437)( 37,433)( 38,435)( 39,434)( 40,430)
( 41,432)( 42,431)( 43,427)( 44,429)( 45,428)( 46,424)( 47,426)( 48,425)
( 49,421)( 50,423)( 51,422)( 52,418)( 53,420)( 54,419)( 55,415)( 56,417)
( 57,416)( 58,412)( 59,414)( 60,413)( 61,409)( 62,411)( 63,410)( 64,406)
( 65,408)( 66,407)( 67,403)( 68,405)( 69,404)( 70,400)( 71,402)( 72,401)
( 73,397)( 74,399)( 75,398)( 76,394)( 77,396)( 78,395)( 79,391)( 80,393)
( 81,392)( 82,388)( 83,390)( 84,389)( 85,385)( 86,387)( 87,386)( 88,382)
( 89,384)( 90,383)( 91,379)( 92,381)( 93,380)( 94,283)( 95,285)( 96,284)
( 97,280)( 98,282)( 99,281)(100,370)(101,372)(102,371)(103,367)(104,369)
(105,368)(106,364)(107,366)(108,365)(109,361)(110,363)(111,362)(112,358)
(113,360)(114,359)(115,355)(116,357)(117,356)(118,352)(119,354)(120,353)
(121,349)(122,351)(123,350)(124,346)(125,348)(126,347)(127,343)(128,345)
(129,344)(130,340)(131,342)(132,341)(133,337)(134,339)(135,338)(136,334)
(137,336)(138,335)(139,331)(140,333)(141,332)(142,328)(143,330)(144,329)
(145,325)(146,327)(147,326)(148,322)(149,324)(150,323)(151,319)(152,321)
(153,320)(154,316)(155,318)(156,317)(157,313)(158,315)(159,314)(160,310)
(161,312)(162,311)(163,307)(164,309)(165,308)(166,304)(167,306)(168,305)
(169,301)(170,303)(171,302)(172,298)(173,300)(174,299)(175,295)(176,297)
(177,296)(178,292)(179,294)(180,293)(181,289)(182,291)(183,290)(184,286)
(185,288)(186,287)(187,470)(188,469)(189,471)(190,467)(191,466)(192,468)
(193,557)(194,556)(195,558)(196,554)(197,553)(198,555)(199,551)(200,550)
(201,552)(202,548)(203,547)(204,549)(205,545)(206,544)(207,546)(208,542)
(209,541)(210,543)(211,539)(212,538)(213,540)(214,536)(215,535)(216,537)
(217,533)(218,532)(219,534)(220,530)(221,529)(222,531)(223,527)(224,526)
(225,528)(226,524)(227,523)(228,525)(229,521)(230,520)(231,522)(232,518)
(233,517)(234,519)(235,515)(236,514)(237,516)(238,512)(239,511)(240,513)
(241,509)(242,508)(243,510)(244,506)(245,505)(246,507)(247,503)(248,502)
(249,504)(250,500)(251,499)(252,501)(253,497)(254,496)(255,498)(256,494)
(257,493)(258,495)(259,491)(260,490)(261,492)(262,488)(263,487)(264,489)
(265,485)(266,484)(267,486)(268,482)(269,481)(270,483)(271,479)(272,478)
(273,480)(274,476)(275,475)(276,477)(277,473)(278,472)(279,474);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(558)!(  2,  3)(  4, 91)(  5, 93)(  6, 92)(  7, 88)(  8, 90)(  9, 89)
( 10, 85)( 11, 87)( 12, 86)( 13, 82)( 14, 84)( 15, 83)( 16, 79)( 17, 81)
( 18, 80)( 19, 76)( 20, 78)( 21, 77)( 22, 73)( 23, 75)( 24, 74)( 25, 70)
( 26, 72)( 27, 71)( 28, 67)( 29, 69)( 30, 68)( 31, 64)( 32, 66)( 33, 65)
( 34, 61)( 35, 63)( 36, 62)( 37, 58)( 38, 60)( 39, 59)( 40, 55)( 41, 57)
( 42, 56)( 43, 52)( 44, 54)( 45, 53)( 46, 49)( 47, 51)( 48, 50)( 94,188)
( 95,187)( 96,189)( 97,278)( 98,277)( 99,279)(100,275)(101,274)(102,276)
(103,272)(104,271)(105,273)(106,269)(107,268)(108,270)(109,266)(110,265)
(111,267)(112,263)(113,262)(114,264)(115,260)(116,259)(117,261)(118,257)
(119,256)(120,258)(121,254)(122,253)(123,255)(124,251)(125,250)(126,252)
(127,248)(128,247)(129,249)(130,245)(131,244)(132,246)(133,242)(134,241)
(135,243)(136,239)(137,238)(138,240)(139,236)(140,235)(141,237)(142,233)
(143,232)(144,234)(145,230)(146,229)(147,231)(148,227)(149,226)(150,228)
(151,224)(152,223)(153,225)(154,221)(155,220)(156,222)(157,218)(158,217)
(159,219)(160,215)(161,214)(162,216)(163,212)(164,211)(165,213)(166,209)
(167,208)(168,210)(169,206)(170,205)(171,207)(172,203)(173,202)(174,204)
(175,200)(176,199)(177,201)(178,197)(179,196)(180,198)(181,194)(182,193)
(183,195)(184,191)(185,190)(186,192)(281,282)(283,370)(284,372)(285,371)
(286,367)(287,369)(288,368)(289,364)(290,366)(291,365)(292,361)(293,363)
(294,362)(295,358)(296,360)(297,359)(298,355)(299,357)(300,356)(301,352)
(302,354)(303,353)(304,349)(305,351)(306,350)(307,346)(308,348)(309,347)
(310,343)(311,345)(312,344)(313,340)(314,342)(315,341)(316,337)(317,339)
(318,338)(319,334)(320,336)(321,335)(322,331)(323,333)(324,332)(325,328)
(326,330)(327,329)(373,467)(374,466)(375,468)(376,557)(377,556)(378,558)
(379,554)(380,553)(381,555)(382,551)(383,550)(384,552)(385,548)(386,547)
(387,549)(388,545)(389,544)(390,546)(391,542)(392,541)(393,543)(394,539)
(395,538)(396,540)(397,536)(398,535)(399,537)(400,533)(401,532)(402,534)
(403,530)(404,529)(405,531)(406,527)(407,526)(408,528)(409,524)(410,523)
(411,525)(412,521)(413,520)(414,522)(415,518)(416,517)(417,519)(418,515)
(419,514)(420,516)(421,512)(422,511)(423,513)(424,509)(425,508)(426,510)
(427,506)(428,505)(429,507)(430,503)(431,502)(432,504)(433,500)(434,499)
(435,501)(436,497)(437,496)(438,498)(439,494)(440,493)(441,495)(442,491)
(443,490)(444,492)(445,488)(446,487)(447,489)(448,485)(449,484)(450,486)
(451,482)(452,481)(453,483)(454,479)(455,478)(456,480)(457,476)(458,475)
(459,477)(460,473)(461,472)(462,474)(463,470)(464,469)(465,471);
s1 := Sym(558)!(  1,376)(  2,378)(  3,377)(  4,373)(  5,375)(  6,374)(  7,463)
(  8,465)(  9,464)( 10,460)( 11,462)( 12,461)( 13,457)( 14,459)( 15,458)
( 16,454)( 17,456)( 18,455)( 19,451)( 20,453)( 21,452)( 22,448)( 23,450)
( 24,449)( 25,445)( 26,447)( 27,446)( 28,442)( 29,444)( 30,443)( 31,439)
( 32,441)( 33,440)( 34,436)( 35,438)( 36,437)( 37,433)( 38,435)( 39,434)
( 40,430)( 41,432)( 42,431)( 43,427)( 44,429)( 45,428)( 46,424)( 47,426)
( 48,425)( 49,421)( 50,423)( 51,422)( 52,418)( 53,420)( 54,419)( 55,415)
( 56,417)( 57,416)( 58,412)( 59,414)( 60,413)( 61,409)( 62,411)( 63,410)
( 64,406)( 65,408)( 66,407)( 67,403)( 68,405)( 69,404)( 70,400)( 71,402)
( 72,401)( 73,397)( 74,399)( 75,398)( 76,394)( 77,396)( 78,395)( 79,391)
( 80,393)( 81,392)( 82,388)( 83,390)( 84,389)( 85,385)( 86,387)( 87,386)
( 88,382)( 89,384)( 90,383)( 91,379)( 92,381)( 93,380)( 94,283)( 95,285)
( 96,284)( 97,280)( 98,282)( 99,281)(100,370)(101,372)(102,371)(103,367)
(104,369)(105,368)(106,364)(107,366)(108,365)(109,361)(110,363)(111,362)
(112,358)(113,360)(114,359)(115,355)(116,357)(117,356)(118,352)(119,354)
(120,353)(121,349)(122,351)(123,350)(124,346)(125,348)(126,347)(127,343)
(128,345)(129,344)(130,340)(131,342)(132,341)(133,337)(134,339)(135,338)
(136,334)(137,336)(138,335)(139,331)(140,333)(141,332)(142,328)(143,330)
(144,329)(145,325)(146,327)(147,326)(148,322)(149,324)(150,323)(151,319)
(152,321)(153,320)(154,316)(155,318)(156,317)(157,313)(158,315)(159,314)
(160,310)(161,312)(162,311)(163,307)(164,309)(165,308)(166,304)(167,306)
(168,305)(169,301)(170,303)(171,302)(172,298)(173,300)(174,299)(175,295)
(176,297)(177,296)(178,292)(179,294)(180,293)(181,289)(182,291)(183,290)
(184,286)(185,288)(186,287)(187,470)(188,469)(189,471)(190,467)(191,466)
(192,468)(193,557)(194,556)(195,558)(196,554)(197,553)(198,555)(199,551)
(200,550)(201,552)(202,548)(203,547)(204,549)(205,545)(206,544)(207,546)
(208,542)(209,541)(210,543)(211,539)(212,538)(213,540)(214,536)(215,535)
(216,537)(217,533)(218,532)(219,534)(220,530)(221,529)(222,531)(223,527)
(224,526)(225,528)(226,524)(227,523)(228,525)(229,521)(230,520)(231,522)
(232,518)(233,517)(234,519)(235,515)(236,514)(237,516)(238,512)(239,511)
(240,513)(241,509)(242,508)(243,510)(244,506)(245,505)(246,507)(247,503)
(248,502)(249,504)(250,500)(251,499)(252,501)(253,497)(254,496)(255,498)
(256,494)(257,493)(258,495)(259,491)(260,490)(261,492)(262,488)(263,487)
(264,489)(265,485)(266,484)(267,486)(268,482)(269,481)(270,483)(271,479)
(272,478)(273,480)(274,476)(275,475)(276,477)(277,473)(278,472)(279,474);
poly := sub<Sym(558)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope