include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {564}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {564}*1128
Also Known As : 564-gon, {564}. if this polytope has another name.
Group : SmallGroup(1128,25)
Rank : 2
Schlafli Type : {564}
Number of vertices, edges, etc : 564, 564
Order of s0s1 : 564
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {282}*564
3-fold quotients : {188}*376
4-fold quotients : {141}*282
6-fold quotients : {94}*188
12-fold quotients : {47}*94
47-fold quotients : {12}*24
94-fold quotients : {6}*12
141-fold quotients : {4}*8
188-fold quotients : {3}*6
282-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 47)( 3, 46)( 4, 45)( 5, 44)( 6, 43)( 7, 42)( 8, 41)( 9, 40)
( 10, 39)( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 34)( 16, 33)( 17, 32)
( 18, 31)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 24, 25)( 48, 95)
( 49,141)( 50,140)( 51,139)( 52,138)( 53,137)( 54,136)( 55,135)( 56,134)
( 57,133)( 58,132)( 59,131)( 60,130)( 61,129)( 62,128)( 63,127)( 64,126)
( 65,125)( 66,124)( 67,123)( 68,122)( 69,121)( 70,120)( 71,119)( 72,118)
( 73,117)( 74,116)( 75,115)( 76,114)( 77,113)( 78,112)( 79,111)( 80,110)
( 81,109)( 82,108)( 83,107)( 84,106)( 85,105)( 86,104)( 87,103)( 88,102)
( 89,101)( 90,100)( 91, 99)( 92, 98)( 93, 97)( 94, 96)(143,188)(144,187)
(145,186)(146,185)(147,184)(148,183)(149,182)(150,181)(151,180)(152,179)
(153,178)(154,177)(155,176)(156,175)(157,174)(158,173)(159,172)(160,171)
(161,170)(162,169)(163,168)(164,167)(165,166)(189,236)(190,282)(191,281)
(192,280)(193,279)(194,278)(195,277)(196,276)(197,275)(198,274)(199,273)
(200,272)(201,271)(202,270)(203,269)(204,268)(205,267)(206,266)(207,265)
(208,264)(209,263)(210,262)(211,261)(212,260)(213,259)(214,258)(215,257)
(216,256)(217,255)(218,254)(219,253)(220,252)(221,251)(222,250)(223,249)
(224,248)(225,247)(226,246)(227,245)(228,244)(229,243)(230,242)(231,241)
(232,240)(233,239)(234,238)(235,237)(283,424)(284,470)(285,469)(286,468)
(287,467)(288,466)(289,465)(290,464)(291,463)(292,462)(293,461)(294,460)
(295,459)(296,458)(297,457)(298,456)(299,455)(300,454)(301,453)(302,452)
(303,451)(304,450)(305,449)(306,448)(307,447)(308,446)(309,445)(310,444)
(311,443)(312,442)(313,441)(314,440)(315,439)(316,438)(317,437)(318,436)
(319,435)(320,434)(321,433)(322,432)(323,431)(324,430)(325,429)(326,428)
(327,427)(328,426)(329,425)(330,518)(331,564)(332,563)(333,562)(334,561)
(335,560)(336,559)(337,558)(338,557)(339,556)(340,555)(341,554)(342,553)
(343,552)(344,551)(345,550)(346,549)(347,548)(348,547)(349,546)(350,545)
(351,544)(352,543)(353,542)(354,541)(355,540)(356,539)(357,538)(358,537)
(359,536)(360,535)(361,534)(362,533)(363,532)(364,531)(365,530)(366,529)
(367,528)(368,527)(369,526)(370,525)(371,524)(372,523)(373,522)(374,521)
(375,520)(376,519)(377,471)(378,517)(379,516)(380,515)(381,514)(382,513)
(383,512)(384,511)(385,510)(386,509)(387,508)(388,507)(389,506)(390,505)
(391,504)(392,503)(393,502)(394,501)(395,500)(396,499)(397,498)(398,497)
(399,496)(400,495)(401,494)(402,493)(403,492)(404,491)(405,490)(406,489)
(407,488)(408,487)(409,486)(410,485)(411,484)(412,483)(413,482)(414,481)
(415,480)(416,479)(417,478)(418,477)(419,476)(420,475)(421,474)(422,473)
(423,472);;
s1 := ( 1,331)( 2,330)( 3,376)( 4,375)( 5,374)( 6,373)( 7,372)( 8,371)
( 9,370)( 10,369)( 11,368)( 12,367)( 13,366)( 14,365)( 15,364)( 16,363)
( 17,362)( 18,361)( 19,360)( 20,359)( 21,358)( 22,357)( 23,356)( 24,355)
( 25,354)( 26,353)( 27,352)( 28,351)( 29,350)( 30,349)( 31,348)( 32,347)
( 33,346)( 34,345)( 35,344)( 36,343)( 37,342)( 38,341)( 39,340)( 40,339)
( 41,338)( 42,337)( 43,336)( 44,335)( 45,334)( 46,333)( 47,332)( 48,284)
( 49,283)( 50,329)( 51,328)( 52,327)( 53,326)( 54,325)( 55,324)( 56,323)
( 57,322)( 58,321)( 59,320)( 60,319)( 61,318)( 62,317)( 63,316)( 64,315)
( 65,314)( 66,313)( 67,312)( 68,311)( 69,310)( 70,309)( 71,308)( 72,307)
( 73,306)( 74,305)( 75,304)( 76,303)( 77,302)( 78,301)( 79,300)( 80,299)
( 81,298)( 82,297)( 83,296)( 84,295)( 85,294)( 86,293)( 87,292)( 88,291)
( 89,290)( 90,289)( 91,288)( 92,287)( 93,286)( 94,285)( 95,378)( 96,377)
( 97,423)( 98,422)( 99,421)(100,420)(101,419)(102,418)(103,417)(104,416)
(105,415)(106,414)(107,413)(108,412)(109,411)(110,410)(111,409)(112,408)
(113,407)(114,406)(115,405)(116,404)(117,403)(118,402)(119,401)(120,400)
(121,399)(122,398)(123,397)(124,396)(125,395)(126,394)(127,393)(128,392)
(129,391)(130,390)(131,389)(132,388)(133,387)(134,386)(135,385)(136,384)
(137,383)(138,382)(139,381)(140,380)(141,379)(142,472)(143,471)(144,517)
(145,516)(146,515)(147,514)(148,513)(149,512)(150,511)(151,510)(152,509)
(153,508)(154,507)(155,506)(156,505)(157,504)(158,503)(159,502)(160,501)
(161,500)(162,499)(163,498)(164,497)(165,496)(166,495)(167,494)(168,493)
(169,492)(170,491)(171,490)(172,489)(173,488)(174,487)(175,486)(176,485)
(177,484)(178,483)(179,482)(180,481)(181,480)(182,479)(183,478)(184,477)
(185,476)(186,475)(187,474)(188,473)(189,425)(190,424)(191,470)(192,469)
(193,468)(194,467)(195,466)(196,465)(197,464)(198,463)(199,462)(200,461)
(201,460)(202,459)(203,458)(204,457)(205,456)(206,455)(207,454)(208,453)
(209,452)(210,451)(211,450)(212,449)(213,448)(214,447)(215,446)(216,445)
(217,444)(218,443)(219,442)(220,441)(221,440)(222,439)(223,438)(224,437)
(225,436)(226,435)(227,434)(228,433)(229,432)(230,431)(231,430)(232,429)
(233,428)(234,427)(235,426)(236,519)(237,518)(238,564)(239,563)(240,562)
(241,561)(242,560)(243,559)(244,558)(245,557)(246,556)(247,555)(248,554)
(249,553)(250,552)(251,551)(252,550)(253,549)(254,548)(255,547)(256,546)
(257,545)(258,544)(259,543)(260,542)(261,541)(262,540)(263,539)(264,538)
(265,537)(266,536)(267,535)(268,534)(269,533)(270,532)(271,531)(272,530)
(273,529)(274,528)(275,527)(276,526)(277,525)(278,524)(279,523)(280,522)
(281,521)(282,520);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(564)!( 2, 47)( 3, 46)( 4, 45)( 5, 44)( 6, 43)( 7, 42)( 8, 41)
( 9, 40)( 10, 39)( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 34)( 16, 33)
( 17, 32)( 18, 31)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 24, 25)
( 48, 95)( 49,141)( 50,140)( 51,139)( 52,138)( 53,137)( 54,136)( 55,135)
( 56,134)( 57,133)( 58,132)( 59,131)( 60,130)( 61,129)( 62,128)( 63,127)
( 64,126)( 65,125)( 66,124)( 67,123)( 68,122)( 69,121)( 70,120)( 71,119)
( 72,118)( 73,117)( 74,116)( 75,115)( 76,114)( 77,113)( 78,112)( 79,111)
( 80,110)( 81,109)( 82,108)( 83,107)( 84,106)( 85,105)( 86,104)( 87,103)
( 88,102)( 89,101)( 90,100)( 91, 99)( 92, 98)( 93, 97)( 94, 96)(143,188)
(144,187)(145,186)(146,185)(147,184)(148,183)(149,182)(150,181)(151,180)
(152,179)(153,178)(154,177)(155,176)(156,175)(157,174)(158,173)(159,172)
(160,171)(161,170)(162,169)(163,168)(164,167)(165,166)(189,236)(190,282)
(191,281)(192,280)(193,279)(194,278)(195,277)(196,276)(197,275)(198,274)
(199,273)(200,272)(201,271)(202,270)(203,269)(204,268)(205,267)(206,266)
(207,265)(208,264)(209,263)(210,262)(211,261)(212,260)(213,259)(214,258)
(215,257)(216,256)(217,255)(218,254)(219,253)(220,252)(221,251)(222,250)
(223,249)(224,248)(225,247)(226,246)(227,245)(228,244)(229,243)(230,242)
(231,241)(232,240)(233,239)(234,238)(235,237)(283,424)(284,470)(285,469)
(286,468)(287,467)(288,466)(289,465)(290,464)(291,463)(292,462)(293,461)
(294,460)(295,459)(296,458)(297,457)(298,456)(299,455)(300,454)(301,453)
(302,452)(303,451)(304,450)(305,449)(306,448)(307,447)(308,446)(309,445)
(310,444)(311,443)(312,442)(313,441)(314,440)(315,439)(316,438)(317,437)
(318,436)(319,435)(320,434)(321,433)(322,432)(323,431)(324,430)(325,429)
(326,428)(327,427)(328,426)(329,425)(330,518)(331,564)(332,563)(333,562)
(334,561)(335,560)(336,559)(337,558)(338,557)(339,556)(340,555)(341,554)
(342,553)(343,552)(344,551)(345,550)(346,549)(347,548)(348,547)(349,546)
(350,545)(351,544)(352,543)(353,542)(354,541)(355,540)(356,539)(357,538)
(358,537)(359,536)(360,535)(361,534)(362,533)(363,532)(364,531)(365,530)
(366,529)(367,528)(368,527)(369,526)(370,525)(371,524)(372,523)(373,522)
(374,521)(375,520)(376,519)(377,471)(378,517)(379,516)(380,515)(381,514)
(382,513)(383,512)(384,511)(385,510)(386,509)(387,508)(388,507)(389,506)
(390,505)(391,504)(392,503)(393,502)(394,501)(395,500)(396,499)(397,498)
(398,497)(399,496)(400,495)(401,494)(402,493)(403,492)(404,491)(405,490)
(406,489)(407,488)(408,487)(409,486)(410,485)(411,484)(412,483)(413,482)
(414,481)(415,480)(416,479)(417,478)(418,477)(419,476)(420,475)(421,474)
(422,473)(423,472);
s1 := Sym(564)!( 1,331)( 2,330)( 3,376)( 4,375)( 5,374)( 6,373)( 7,372)
( 8,371)( 9,370)( 10,369)( 11,368)( 12,367)( 13,366)( 14,365)( 15,364)
( 16,363)( 17,362)( 18,361)( 19,360)( 20,359)( 21,358)( 22,357)( 23,356)
( 24,355)( 25,354)( 26,353)( 27,352)( 28,351)( 29,350)( 30,349)( 31,348)
( 32,347)( 33,346)( 34,345)( 35,344)( 36,343)( 37,342)( 38,341)( 39,340)
( 40,339)( 41,338)( 42,337)( 43,336)( 44,335)( 45,334)( 46,333)( 47,332)
( 48,284)( 49,283)( 50,329)( 51,328)( 52,327)( 53,326)( 54,325)( 55,324)
( 56,323)( 57,322)( 58,321)( 59,320)( 60,319)( 61,318)( 62,317)( 63,316)
( 64,315)( 65,314)( 66,313)( 67,312)( 68,311)( 69,310)( 70,309)( 71,308)
( 72,307)( 73,306)( 74,305)( 75,304)( 76,303)( 77,302)( 78,301)( 79,300)
( 80,299)( 81,298)( 82,297)( 83,296)( 84,295)( 85,294)( 86,293)( 87,292)
( 88,291)( 89,290)( 90,289)( 91,288)( 92,287)( 93,286)( 94,285)( 95,378)
( 96,377)( 97,423)( 98,422)( 99,421)(100,420)(101,419)(102,418)(103,417)
(104,416)(105,415)(106,414)(107,413)(108,412)(109,411)(110,410)(111,409)
(112,408)(113,407)(114,406)(115,405)(116,404)(117,403)(118,402)(119,401)
(120,400)(121,399)(122,398)(123,397)(124,396)(125,395)(126,394)(127,393)
(128,392)(129,391)(130,390)(131,389)(132,388)(133,387)(134,386)(135,385)
(136,384)(137,383)(138,382)(139,381)(140,380)(141,379)(142,472)(143,471)
(144,517)(145,516)(146,515)(147,514)(148,513)(149,512)(150,511)(151,510)
(152,509)(153,508)(154,507)(155,506)(156,505)(157,504)(158,503)(159,502)
(160,501)(161,500)(162,499)(163,498)(164,497)(165,496)(166,495)(167,494)
(168,493)(169,492)(170,491)(171,490)(172,489)(173,488)(174,487)(175,486)
(176,485)(177,484)(178,483)(179,482)(180,481)(181,480)(182,479)(183,478)
(184,477)(185,476)(186,475)(187,474)(188,473)(189,425)(190,424)(191,470)
(192,469)(193,468)(194,467)(195,466)(196,465)(197,464)(198,463)(199,462)
(200,461)(201,460)(202,459)(203,458)(204,457)(205,456)(206,455)(207,454)
(208,453)(209,452)(210,451)(211,450)(212,449)(213,448)(214,447)(215,446)
(216,445)(217,444)(218,443)(219,442)(220,441)(221,440)(222,439)(223,438)
(224,437)(225,436)(226,435)(227,434)(228,433)(229,432)(230,431)(231,430)
(232,429)(233,428)(234,427)(235,426)(236,519)(237,518)(238,564)(239,563)
(240,562)(241,561)(242,560)(243,559)(244,558)(245,557)(246,556)(247,555)
(248,554)(249,553)(250,552)(251,551)(252,550)(253,549)(254,548)(255,547)
(256,546)(257,545)(258,544)(259,543)(260,542)(261,541)(262,540)(263,539)
(264,538)(265,537)(266,536)(267,535)(268,534)(269,533)(270,532)(271,531)
(272,530)(273,529)(274,528)(275,527)(276,526)(277,525)(278,524)(279,523)
(280,522)(281,521)(282,520);
poly := sub<Sym(564)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope