Polytope of Type {8,6,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6,12}*1152b
Also Known As : {{8,6|2},{6,12|2}}. if this polytope has another name.
Group : SmallGroup(1152,119752)
Rank : 4
Schlafli Type : {8,6,12}
Number of vertices, edges, etc : 8, 24, 36, 12
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,12}*576a, {8,6,6}*576a
   3-fold quotients : {8,2,12}*384, {8,6,4}*384a
   4-fold quotients : {2,6,12}*288a, {4,6,6}*288a
   6-fold quotients : {4,2,12}*192, {4,6,4}*192a, {8,2,6}*192, {8,6,2}*192
   8-fold quotients : {2,6,6}*144a
   9-fold quotients : {8,2,4}*128
   12-fold quotients : {8,2,3}*96, {2,2,12}*96, {2,6,4}*96a, {4,2,6}*96, {4,6,2}*96a
   18-fold quotients : {4,2,4}*64, {8,2,2}*64
   24-fold quotients : {4,2,3}*48, {2,2,6}*48, {2,6,2}*48
   36-fold quotients : {2,2,4}*32, {4,2,2}*32
   48-fold quotients : {2,2,3}*24, {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)(  8,296)
(  9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)( 16,304)
( 17,305)( 18,306)( 19,307)( 20,308)( 21,309)( 22,310)( 23,311)( 24,312)
( 25,313)( 26,314)( 27,315)( 28,316)( 29,317)( 30,318)( 31,319)( 32,320)
( 33,321)( 34,322)( 35,323)( 36,324)( 37,334)( 38,335)( 39,336)( 40,337)
( 41,338)( 42,339)( 43,340)( 44,341)( 45,342)( 46,325)( 47,326)( 48,327)
( 49,328)( 50,329)( 51,330)( 52,331)( 53,332)( 54,333)( 55,352)( 56,353)
( 57,354)( 58,355)( 59,356)( 60,357)( 61,358)( 62,359)( 63,360)( 64,343)
( 65,344)( 66,345)( 67,346)( 68,347)( 69,348)( 70,349)( 71,350)( 72,351)
( 73,397)( 74,398)( 75,399)( 76,400)( 77,401)( 78,402)( 79,403)( 80,404)
( 81,405)( 82,406)( 83,407)( 84,408)( 85,409)( 86,410)( 87,411)( 88,412)
( 89,413)( 90,414)( 91,415)( 92,416)( 93,417)( 94,418)( 95,419)( 96,420)
( 97,421)( 98,422)( 99,423)(100,424)(101,425)(102,426)(103,427)(104,428)
(105,429)(106,430)(107,431)(108,432)(109,361)(110,362)(111,363)(112,364)
(113,365)(114,366)(115,367)(116,368)(117,369)(118,370)(119,371)(120,372)
(121,373)(122,374)(123,375)(124,376)(125,377)(126,378)(127,379)(128,380)
(129,381)(130,382)(131,383)(132,384)(133,385)(134,386)(135,387)(136,388)
(137,389)(138,390)(139,391)(140,392)(141,393)(142,394)(143,395)(144,396)
(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)(152,440)
(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)(160,448)
(161,449)(162,450)(163,451)(164,452)(165,453)(166,454)(167,455)(168,456)
(169,457)(170,458)(171,459)(172,460)(173,461)(174,462)(175,463)(176,464)
(177,465)(178,466)(179,467)(180,468)(181,478)(182,479)(183,480)(184,481)
(185,482)(186,483)(187,484)(188,485)(189,486)(190,469)(191,470)(192,471)
(193,472)(194,473)(195,474)(196,475)(197,476)(198,477)(199,496)(200,497)
(201,498)(202,499)(203,500)(204,501)(205,502)(206,503)(207,504)(208,487)
(209,488)(210,489)(211,490)(212,491)(213,492)(214,493)(215,494)(216,495)
(217,541)(218,542)(219,543)(220,544)(221,545)(222,546)(223,547)(224,548)
(225,549)(226,550)(227,551)(228,552)(229,553)(230,554)(231,555)(232,556)
(233,557)(234,558)(235,559)(236,560)(237,561)(238,562)(239,563)(240,564)
(241,565)(242,566)(243,567)(244,568)(245,569)(246,570)(247,571)(248,572)
(249,573)(250,574)(251,575)(252,576)(253,505)(254,506)(255,507)(256,508)
(257,509)(258,510)(259,511)(260,512)(261,513)(262,514)(263,515)(264,516)
(265,517)(266,518)(267,519)(268,520)(269,521)(270,522)(271,523)(272,524)
(273,525)(274,526)(275,527)(276,528)(277,529)(278,530)(279,531)(280,532)
(281,533)(282,534)(283,535)(284,536)(285,537)(286,538)(287,539)(288,540);;
s1 := (  1, 73)(  2, 78)(  3, 80)(  4, 76)(  5, 81)(  6, 74)(  7, 79)(  8, 75)
(  9, 77)( 10, 82)( 11, 87)( 12, 89)( 13, 85)( 14, 90)( 15, 83)( 16, 88)
( 17, 84)( 18, 86)( 19, 91)( 20, 96)( 21, 98)( 22, 94)( 23, 99)( 24, 92)
( 25, 97)( 26, 93)( 27, 95)( 28,100)( 29,105)( 30,107)( 31,103)( 32,108)
( 33,101)( 34,106)( 35,102)( 36,104)( 37,118)( 38,123)( 39,125)( 40,121)
( 41,126)( 42,119)( 43,124)( 44,120)( 45,122)( 46,109)( 47,114)( 48,116)
( 49,112)( 50,117)( 51,110)( 52,115)( 53,111)( 54,113)( 55,136)( 56,141)
( 57,143)( 58,139)( 59,144)( 60,137)( 61,142)( 62,138)( 63,140)( 64,127)
( 65,132)( 66,134)( 67,130)( 68,135)( 69,128)( 70,133)( 71,129)( 72,131)
(145,217)(146,222)(147,224)(148,220)(149,225)(150,218)(151,223)(152,219)
(153,221)(154,226)(155,231)(156,233)(157,229)(158,234)(159,227)(160,232)
(161,228)(162,230)(163,235)(164,240)(165,242)(166,238)(167,243)(168,236)
(169,241)(170,237)(171,239)(172,244)(173,249)(174,251)(175,247)(176,252)
(177,245)(178,250)(179,246)(180,248)(181,262)(182,267)(183,269)(184,265)
(185,270)(186,263)(187,268)(188,264)(189,266)(190,253)(191,258)(192,260)
(193,256)(194,261)(195,254)(196,259)(197,255)(198,257)(199,280)(200,285)
(201,287)(202,283)(203,288)(204,281)(205,286)(206,282)(207,284)(208,271)
(209,276)(210,278)(211,274)(212,279)(213,272)(214,277)(215,273)(216,275)
(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)(295,367)(296,363)
(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)(303,371)(304,376)
(305,372)(306,374)(307,379)(308,384)(309,386)(310,382)(311,387)(312,380)
(313,385)(314,381)(315,383)(316,388)(317,393)(318,395)(319,391)(320,396)
(321,389)(322,394)(323,390)(324,392)(325,406)(326,411)(327,413)(328,409)
(329,414)(330,407)(331,412)(332,408)(333,410)(334,397)(335,402)(336,404)
(337,400)(338,405)(339,398)(340,403)(341,399)(342,401)(343,424)(344,429)
(345,431)(346,427)(347,432)(348,425)(349,430)(350,426)(351,428)(352,415)
(353,420)(354,422)(355,418)(356,423)(357,416)(358,421)(359,417)(360,419)
(433,505)(434,510)(435,512)(436,508)(437,513)(438,506)(439,511)(440,507)
(441,509)(442,514)(443,519)(444,521)(445,517)(446,522)(447,515)(448,520)
(449,516)(450,518)(451,523)(452,528)(453,530)(454,526)(455,531)(456,524)
(457,529)(458,525)(459,527)(460,532)(461,537)(462,539)(463,535)(464,540)
(465,533)(466,538)(467,534)(468,536)(469,550)(470,555)(471,557)(472,553)
(473,558)(474,551)(475,556)(476,552)(477,554)(478,541)(479,546)(480,548)
(481,544)(482,549)(483,542)(484,547)(485,543)(486,545)(487,568)(488,573)
(489,575)(490,571)(491,576)(492,569)(493,574)(494,570)(495,572)(496,559)
(497,564)(498,566)(499,562)(500,567)(501,560)(502,565)(503,561)(504,563);;
s2 := (  1,146)(  2,145)(  3,147)(  4,152)(  5,151)(  6,153)(  7,149)(  8,148)
(  9,150)( 10,155)( 11,154)( 12,156)( 13,161)( 14,160)( 15,162)( 16,158)
( 17,157)( 18,159)( 19,164)( 20,163)( 21,165)( 22,170)( 23,169)( 24,171)
( 25,167)( 26,166)( 27,168)( 28,173)( 29,172)( 30,174)( 31,179)( 32,178)
( 33,180)( 34,176)( 35,175)( 36,177)( 37,182)( 38,181)( 39,183)( 40,188)
( 41,187)( 42,189)( 43,185)( 44,184)( 45,186)( 46,191)( 47,190)( 48,192)
( 49,197)( 50,196)( 51,198)( 52,194)( 53,193)( 54,195)( 55,200)( 56,199)
( 57,201)( 58,206)( 59,205)( 60,207)( 61,203)( 62,202)( 63,204)( 64,209)
( 65,208)( 66,210)( 67,215)( 68,214)( 69,216)( 70,212)( 71,211)( 72,213)
( 73,218)( 74,217)( 75,219)( 76,224)( 77,223)( 78,225)( 79,221)( 80,220)
( 81,222)( 82,227)( 83,226)( 84,228)( 85,233)( 86,232)( 87,234)( 88,230)
( 89,229)( 90,231)( 91,236)( 92,235)( 93,237)( 94,242)( 95,241)( 96,243)
( 97,239)( 98,238)( 99,240)(100,245)(101,244)(102,246)(103,251)(104,250)
(105,252)(106,248)(107,247)(108,249)(109,254)(110,253)(111,255)(112,260)
(113,259)(114,261)(115,257)(116,256)(117,258)(118,263)(119,262)(120,264)
(121,269)(122,268)(123,270)(124,266)(125,265)(126,267)(127,272)(128,271)
(129,273)(130,278)(131,277)(132,279)(133,275)(134,274)(135,276)(136,281)
(137,280)(138,282)(139,287)(140,286)(141,288)(142,284)(143,283)(144,285)
(289,434)(290,433)(291,435)(292,440)(293,439)(294,441)(295,437)(296,436)
(297,438)(298,443)(299,442)(300,444)(301,449)(302,448)(303,450)(304,446)
(305,445)(306,447)(307,452)(308,451)(309,453)(310,458)(311,457)(312,459)
(313,455)(314,454)(315,456)(316,461)(317,460)(318,462)(319,467)(320,466)
(321,468)(322,464)(323,463)(324,465)(325,470)(326,469)(327,471)(328,476)
(329,475)(330,477)(331,473)(332,472)(333,474)(334,479)(335,478)(336,480)
(337,485)(338,484)(339,486)(340,482)(341,481)(342,483)(343,488)(344,487)
(345,489)(346,494)(347,493)(348,495)(349,491)(350,490)(351,492)(352,497)
(353,496)(354,498)(355,503)(356,502)(357,504)(358,500)(359,499)(360,501)
(361,506)(362,505)(363,507)(364,512)(365,511)(366,513)(367,509)(368,508)
(369,510)(370,515)(371,514)(372,516)(373,521)(374,520)(375,522)(376,518)
(377,517)(378,519)(379,524)(380,523)(381,525)(382,530)(383,529)(384,531)
(385,527)(386,526)(387,528)(388,533)(389,532)(390,534)(391,539)(392,538)
(393,540)(394,536)(395,535)(396,537)(397,542)(398,541)(399,543)(400,548)
(401,547)(402,549)(403,545)(404,544)(405,546)(406,551)(407,550)(408,552)
(409,557)(410,556)(411,558)(412,554)(413,553)(414,555)(415,560)(416,559)
(417,561)(418,566)(419,565)(420,567)(421,563)(422,562)(423,564)(424,569)
(425,568)(426,570)(427,575)(428,574)(429,576)(430,572)(431,571)(432,573);;
s3 := (  1,109)(  2,116)(  3,114)(  4,115)(  5,113)(  6,111)(  7,112)(  8,110)
(  9,117)( 10,118)( 11,125)( 12,123)( 13,124)( 14,122)( 15,120)( 16,121)
( 17,119)( 18,126)( 19,127)( 20,134)( 21,132)( 22,133)( 23,131)( 24,129)
( 25,130)( 26,128)( 27,135)( 28,136)( 29,143)( 30,141)( 31,142)( 32,140)
( 33,138)( 34,139)( 35,137)( 36,144)( 37, 82)( 38, 89)( 39, 87)( 40, 88)
( 41, 86)( 42, 84)( 43, 85)( 44, 83)( 45, 90)( 46, 73)( 47, 80)( 48, 78)
( 49, 79)( 50, 77)( 51, 75)( 52, 76)( 53, 74)( 54, 81)( 55,100)( 56,107)
( 57,105)( 58,106)( 59,104)( 60,102)( 61,103)( 62,101)( 63,108)( 64, 91)
( 65, 98)( 66, 96)( 67, 97)( 68, 95)( 69, 93)( 70, 94)( 71, 92)( 72, 99)
(145,271)(146,278)(147,276)(148,277)(149,275)(150,273)(151,274)(152,272)
(153,279)(154,280)(155,287)(156,285)(157,286)(158,284)(159,282)(160,283)
(161,281)(162,288)(163,253)(164,260)(165,258)(166,259)(167,257)(168,255)
(169,256)(170,254)(171,261)(172,262)(173,269)(174,267)(175,268)(176,266)
(177,264)(178,265)(179,263)(180,270)(181,244)(182,251)(183,249)(184,250)
(185,248)(186,246)(187,247)(188,245)(189,252)(190,235)(191,242)(192,240)
(193,241)(194,239)(195,237)(196,238)(197,236)(198,243)(199,226)(200,233)
(201,231)(202,232)(203,230)(204,228)(205,229)(206,227)(207,234)(208,217)
(209,224)(210,222)(211,223)(212,221)(213,219)(214,220)(215,218)(216,225)
(289,361)(290,368)(291,366)(292,367)(293,365)(294,363)(295,364)(296,362)
(297,369)(298,370)(299,377)(300,375)(301,376)(302,374)(303,372)(304,373)
(305,371)(306,378)(307,379)(308,386)(309,384)(310,385)(311,383)(312,381)
(313,382)(314,380)(315,387)(316,388)(317,395)(318,393)(319,394)(320,392)
(321,390)(322,391)(323,389)(324,396)(325,397)(326,404)(327,402)(328,403)
(329,401)(330,399)(331,400)(332,398)(333,405)(334,406)(335,413)(336,411)
(337,412)(338,410)(339,408)(340,409)(341,407)(342,414)(343,415)(344,422)
(345,420)(346,421)(347,419)(348,417)(349,418)(350,416)(351,423)(352,424)
(353,431)(354,429)(355,430)(356,428)(357,426)(358,427)(359,425)(360,432)
(433,523)(434,530)(435,528)(436,529)(437,527)(438,525)(439,526)(440,524)
(441,531)(442,532)(443,539)(444,537)(445,538)(446,536)(447,534)(448,535)
(449,533)(450,540)(451,505)(452,512)(453,510)(454,511)(455,509)(456,507)
(457,508)(458,506)(459,513)(460,514)(461,521)(462,519)(463,520)(464,518)
(465,516)(466,517)(467,515)(468,522)(469,559)(470,566)(471,564)(472,565)
(473,563)(474,561)(475,562)(476,560)(477,567)(478,568)(479,575)(480,573)
(481,574)(482,572)(483,570)(484,571)(485,569)(486,576)(487,541)(488,548)
(489,546)(490,547)(491,545)(492,543)(493,544)(494,542)(495,549)(496,550)
(497,557)(498,555)(499,556)(500,554)(501,552)(502,553)(503,551)(504,558);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)
(  8,296)(  9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)
( 16,304)( 17,305)( 18,306)( 19,307)( 20,308)( 21,309)( 22,310)( 23,311)
( 24,312)( 25,313)( 26,314)( 27,315)( 28,316)( 29,317)( 30,318)( 31,319)
( 32,320)( 33,321)( 34,322)( 35,323)( 36,324)( 37,334)( 38,335)( 39,336)
( 40,337)( 41,338)( 42,339)( 43,340)( 44,341)( 45,342)( 46,325)( 47,326)
( 48,327)( 49,328)( 50,329)( 51,330)( 52,331)( 53,332)( 54,333)( 55,352)
( 56,353)( 57,354)( 58,355)( 59,356)( 60,357)( 61,358)( 62,359)( 63,360)
( 64,343)( 65,344)( 66,345)( 67,346)( 68,347)( 69,348)( 70,349)( 71,350)
( 72,351)( 73,397)( 74,398)( 75,399)( 76,400)( 77,401)( 78,402)( 79,403)
( 80,404)( 81,405)( 82,406)( 83,407)( 84,408)( 85,409)( 86,410)( 87,411)
( 88,412)( 89,413)( 90,414)( 91,415)( 92,416)( 93,417)( 94,418)( 95,419)
( 96,420)( 97,421)( 98,422)( 99,423)(100,424)(101,425)(102,426)(103,427)
(104,428)(105,429)(106,430)(107,431)(108,432)(109,361)(110,362)(111,363)
(112,364)(113,365)(114,366)(115,367)(116,368)(117,369)(118,370)(119,371)
(120,372)(121,373)(122,374)(123,375)(124,376)(125,377)(126,378)(127,379)
(128,380)(129,381)(130,382)(131,383)(132,384)(133,385)(134,386)(135,387)
(136,388)(137,389)(138,390)(139,391)(140,392)(141,393)(142,394)(143,395)
(144,396)(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)
(152,440)(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)
(160,448)(161,449)(162,450)(163,451)(164,452)(165,453)(166,454)(167,455)
(168,456)(169,457)(170,458)(171,459)(172,460)(173,461)(174,462)(175,463)
(176,464)(177,465)(178,466)(179,467)(180,468)(181,478)(182,479)(183,480)
(184,481)(185,482)(186,483)(187,484)(188,485)(189,486)(190,469)(191,470)
(192,471)(193,472)(194,473)(195,474)(196,475)(197,476)(198,477)(199,496)
(200,497)(201,498)(202,499)(203,500)(204,501)(205,502)(206,503)(207,504)
(208,487)(209,488)(210,489)(211,490)(212,491)(213,492)(214,493)(215,494)
(216,495)(217,541)(218,542)(219,543)(220,544)(221,545)(222,546)(223,547)
(224,548)(225,549)(226,550)(227,551)(228,552)(229,553)(230,554)(231,555)
(232,556)(233,557)(234,558)(235,559)(236,560)(237,561)(238,562)(239,563)
(240,564)(241,565)(242,566)(243,567)(244,568)(245,569)(246,570)(247,571)
(248,572)(249,573)(250,574)(251,575)(252,576)(253,505)(254,506)(255,507)
(256,508)(257,509)(258,510)(259,511)(260,512)(261,513)(262,514)(263,515)
(264,516)(265,517)(266,518)(267,519)(268,520)(269,521)(270,522)(271,523)
(272,524)(273,525)(274,526)(275,527)(276,528)(277,529)(278,530)(279,531)
(280,532)(281,533)(282,534)(283,535)(284,536)(285,537)(286,538)(287,539)
(288,540);
s1 := Sym(576)!(  1, 73)(  2, 78)(  3, 80)(  4, 76)(  5, 81)(  6, 74)(  7, 79)
(  8, 75)(  9, 77)( 10, 82)( 11, 87)( 12, 89)( 13, 85)( 14, 90)( 15, 83)
( 16, 88)( 17, 84)( 18, 86)( 19, 91)( 20, 96)( 21, 98)( 22, 94)( 23, 99)
( 24, 92)( 25, 97)( 26, 93)( 27, 95)( 28,100)( 29,105)( 30,107)( 31,103)
( 32,108)( 33,101)( 34,106)( 35,102)( 36,104)( 37,118)( 38,123)( 39,125)
( 40,121)( 41,126)( 42,119)( 43,124)( 44,120)( 45,122)( 46,109)( 47,114)
( 48,116)( 49,112)( 50,117)( 51,110)( 52,115)( 53,111)( 54,113)( 55,136)
( 56,141)( 57,143)( 58,139)( 59,144)( 60,137)( 61,142)( 62,138)( 63,140)
( 64,127)( 65,132)( 66,134)( 67,130)( 68,135)( 69,128)( 70,133)( 71,129)
( 72,131)(145,217)(146,222)(147,224)(148,220)(149,225)(150,218)(151,223)
(152,219)(153,221)(154,226)(155,231)(156,233)(157,229)(158,234)(159,227)
(160,232)(161,228)(162,230)(163,235)(164,240)(165,242)(166,238)(167,243)
(168,236)(169,241)(170,237)(171,239)(172,244)(173,249)(174,251)(175,247)
(176,252)(177,245)(178,250)(179,246)(180,248)(181,262)(182,267)(183,269)
(184,265)(185,270)(186,263)(187,268)(188,264)(189,266)(190,253)(191,258)
(192,260)(193,256)(194,261)(195,254)(196,259)(197,255)(198,257)(199,280)
(200,285)(201,287)(202,283)(203,288)(204,281)(205,286)(206,282)(207,284)
(208,271)(209,276)(210,278)(211,274)(212,279)(213,272)(214,277)(215,273)
(216,275)(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)(295,367)
(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)(303,371)
(304,376)(305,372)(306,374)(307,379)(308,384)(309,386)(310,382)(311,387)
(312,380)(313,385)(314,381)(315,383)(316,388)(317,393)(318,395)(319,391)
(320,396)(321,389)(322,394)(323,390)(324,392)(325,406)(326,411)(327,413)
(328,409)(329,414)(330,407)(331,412)(332,408)(333,410)(334,397)(335,402)
(336,404)(337,400)(338,405)(339,398)(340,403)(341,399)(342,401)(343,424)
(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)(350,426)(351,428)
(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)(358,421)(359,417)
(360,419)(433,505)(434,510)(435,512)(436,508)(437,513)(438,506)(439,511)
(440,507)(441,509)(442,514)(443,519)(444,521)(445,517)(446,522)(447,515)
(448,520)(449,516)(450,518)(451,523)(452,528)(453,530)(454,526)(455,531)
(456,524)(457,529)(458,525)(459,527)(460,532)(461,537)(462,539)(463,535)
(464,540)(465,533)(466,538)(467,534)(468,536)(469,550)(470,555)(471,557)
(472,553)(473,558)(474,551)(475,556)(476,552)(477,554)(478,541)(479,546)
(480,548)(481,544)(482,549)(483,542)(484,547)(485,543)(486,545)(487,568)
(488,573)(489,575)(490,571)(491,576)(492,569)(493,574)(494,570)(495,572)
(496,559)(497,564)(498,566)(499,562)(500,567)(501,560)(502,565)(503,561)
(504,563);
s2 := Sym(576)!(  1,146)(  2,145)(  3,147)(  4,152)(  5,151)(  6,153)(  7,149)
(  8,148)(  9,150)( 10,155)( 11,154)( 12,156)( 13,161)( 14,160)( 15,162)
( 16,158)( 17,157)( 18,159)( 19,164)( 20,163)( 21,165)( 22,170)( 23,169)
( 24,171)( 25,167)( 26,166)( 27,168)( 28,173)( 29,172)( 30,174)( 31,179)
( 32,178)( 33,180)( 34,176)( 35,175)( 36,177)( 37,182)( 38,181)( 39,183)
( 40,188)( 41,187)( 42,189)( 43,185)( 44,184)( 45,186)( 46,191)( 47,190)
( 48,192)( 49,197)( 50,196)( 51,198)( 52,194)( 53,193)( 54,195)( 55,200)
( 56,199)( 57,201)( 58,206)( 59,205)( 60,207)( 61,203)( 62,202)( 63,204)
( 64,209)( 65,208)( 66,210)( 67,215)( 68,214)( 69,216)( 70,212)( 71,211)
( 72,213)( 73,218)( 74,217)( 75,219)( 76,224)( 77,223)( 78,225)( 79,221)
( 80,220)( 81,222)( 82,227)( 83,226)( 84,228)( 85,233)( 86,232)( 87,234)
( 88,230)( 89,229)( 90,231)( 91,236)( 92,235)( 93,237)( 94,242)( 95,241)
( 96,243)( 97,239)( 98,238)( 99,240)(100,245)(101,244)(102,246)(103,251)
(104,250)(105,252)(106,248)(107,247)(108,249)(109,254)(110,253)(111,255)
(112,260)(113,259)(114,261)(115,257)(116,256)(117,258)(118,263)(119,262)
(120,264)(121,269)(122,268)(123,270)(124,266)(125,265)(126,267)(127,272)
(128,271)(129,273)(130,278)(131,277)(132,279)(133,275)(134,274)(135,276)
(136,281)(137,280)(138,282)(139,287)(140,286)(141,288)(142,284)(143,283)
(144,285)(289,434)(290,433)(291,435)(292,440)(293,439)(294,441)(295,437)
(296,436)(297,438)(298,443)(299,442)(300,444)(301,449)(302,448)(303,450)
(304,446)(305,445)(306,447)(307,452)(308,451)(309,453)(310,458)(311,457)
(312,459)(313,455)(314,454)(315,456)(316,461)(317,460)(318,462)(319,467)
(320,466)(321,468)(322,464)(323,463)(324,465)(325,470)(326,469)(327,471)
(328,476)(329,475)(330,477)(331,473)(332,472)(333,474)(334,479)(335,478)
(336,480)(337,485)(338,484)(339,486)(340,482)(341,481)(342,483)(343,488)
(344,487)(345,489)(346,494)(347,493)(348,495)(349,491)(350,490)(351,492)
(352,497)(353,496)(354,498)(355,503)(356,502)(357,504)(358,500)(359,499)
(360,501)(361,506)(362,505)(363,507)(364,512)(365,511)(366,513)(367,509)
(368,508)(369,510)(370,515)(371,514)(372,516)(373,521)(374,520)(375,522)
(376,518)(377,517)(378,519)(379,524)(380,523)(381,525)(382,530)(383,529)
(384,531)(385,527)(386,526)(387,528)(388,533)(389,532)(390,534)(391,539)
(392,538)(393,540)(394,536)(395,535)(396,537)(397,542)(398,541)(399,543)
(400,548)(401,547)(402,549)(403,545)(404,544)(405,546)(406,551)(407,550)
(408,552)(409,557)(410,556)(411,558)(412,554)(413,553)(414,555)(415,560)
(416,559)(417,561)(418,566)(419,565)(420,567)(421,563)(422,562)(423,564)
(424,569)(425,568)(426,570)(427,575)(428,574)(429,576)(430,572)(431,571)
(432,573);
s3 := Sym(576)!(  1,109)(  2,116)(  3,114)(  4,115)(  5,113)(  6,111)(  7,112)
(  8,110)(  9,117)( 10,118)( 11,125)( 12,123)( 13,124)( 14,122)( 15,120)
( 16,121)( 17,119)( 18,126)( 19,127)( 20,134)( 21,132)( 22,133)( 23,131)
( 24,129)( 25,130)( 26,128)( 27,135)( 28,136)( 29,143)( 30,141)( 31,142)
( 32,140)( 33,138)( 34,139)( 35,137)( 36,144)( 37, 82)( 38, 89)( 39, 87)
( 40, 88)( 41, 86)( 42, 84)( 43, 85)( 44, 83)( 45, 90)( 46, 73)( 47, 80)
( 48, 78)( 49, 79)( 50, 77)( 51, 75)( 52, 76)( 53, 74)( 54, 81)( 55,100)
( 56,107)( 57,105)( 58,106)( 59,104)( 60,102)( 61,103)( 62,101)( 63,108)
( 64, 91)( 65, 98)( 66, 96)( 67, 97)( 68, 95)( 69, 93)( 70, 94)( 71, 92)
( 72, 99)(145,271)(146,278)(147,276)(148,277)(149,275)(150,273)(151,274)
(152,272)(153,279)(154,280)(155,287)(156,285)(157,286)(158,284)(159,282)
(160,283)(161,281)(162,288)(163,253)(164,260)(165,258)(166,259)(167,257)
(168,255)(169,256)(170,254)(171,261)(172,262)(173,269)(174,267)(175,268)
(176,266)(177,264)(178,265)(179,263)(180,270)(181,244)(182,251)(183,249)
(184,250)(185,248)(186,246)(187,247)(188,245)(189,252)(190,235)(191,242)
(192,240)(193,241)(194,239)(195,237)(196,238)(197,236)(198,243)(199,226)
(200,233)(201,231)(202,232)(203,230)(204,228)(205,229)(206,227)(207,234)
(208,217)(209,224)(210,222)(211,223)(212,221)(213,219)(214,220)(215,218)
(216,225)(289,361)(290,368)(291,366)(292,367)(293,365)(294,363)(295,364)
(296,362)(297,369)(298,370)(299,377)(300,375)(301,376)(302,374)(303,372)
(304,373)(305,371)(306,378)(307,379)(308,386)(309,384)(310,385)(311,383)
(312,381)(313,382)(314,380)(315,387)(316,388)(317,395)(318,393)(319,394)
(320,392)(321,390)(322,391)(323,389)(324,396)(325,397)(326,404)(327,402)
(328,403)(329,401)(330,399)(331,400)(332,398)(333,405)(334,406)(335,413)
(336,411)(337,412)(338,410)(339,408)(340,409)(341,407)(342,414)(343,415)
(344,422)(345,420)(346,421)(347,419)(348,417)(349,418)(350,416)(351,423)
(352,424)(353,431)(354,429)(355,430)(356,428)(357,426)(358,427)(359,425)
(360,432)(433,523)(434,530)(435,528)(436,529)(437,527)(438,525)(439,526)
(440,524)(441,531)(442,532)(443,539)(444,537)(445,538)(446,536)(447,534)
(448,535)(449,533)(450,540)(451,505)(452,512)(453,510)(454,511)(455,509)
(456,507)(457,508)(458,506)(459,513)(460,514)(461,521)(462,519)(463,520)
(464,518)(465,516)(466,517)(467,515)(468,522)(469,559)(470,566)(471,564)
(472,565)(473,563)(474,561)(475,562)(476,560)(477,567)(478,568)(479,575)
(480,573)(481,574)(482,572)(483,570)(484,571)(485,569)(486,576)(487,541)
(488,548)(489,546)(490,547)(491,545)(492,543)(493,544)(494,542)(495,549)
(496,550)(497,557)(498,555)(499,556)(500,554)(501,552)(502,553)(503,551)
(504,558);
poly := sub<Sym(576)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope