include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,2,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,2,12}*384
if this polytope has a name.
Group : SmallGroup(384,12181)
Rank : 4
Schlafli Type : {8,2,12}
Number of vertices, edges, etc : 8, 8, 12, 12
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{8,2,12,2} of size 768
Vertex Figure Of :
{2,8,2,12} of size 768
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,2,12}*192, {8,2,6}*192
3-fold quotients : {8,2,4}*128
4-fold quotients : {8,2,3}*96, {2,2,12}*96, {4,2,6}*96
6-fold quotients : {4,2,4}*64, {8,2,2}*64
8-fold quotients : {4,2,3}*48, {2,2,6}*48
12-fold quotients : {2,2,4}*32, {4,2,2}*32
16-fold quotients : {2,2,3}*24
24-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,2,24}*768, {8,4,12}*768a, {16,2,12}*768
3-fold covers : {8,2,36}*1152, {8,6,12}*1152b, {8,6,12}*1152c, {24,2,12}*1152
5-fold covers : {8,2,60}*1920, {8,10,12}*1920, {40,2,12}*1920
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (10,11)(12,13)(15,18)(16,17)(19,20);;
s3 := ( 9,15)(10,12)(11,19)(13,16)(14,17)(18,20);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(20)!(2,3)(4,5)(6,7);
s1 := Sym(20)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(20)!(10,11)(12,13)(15,18)(16,17)(19,20);
s3 := Sym(20)!( 9,15)(10,12)(11,19)(13,16)(14,17)(18,20);
poly := sub<Sym(20)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope