include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,24}*1152k
if this polytope has a name.
Group : SmallGroup(1152,14484)
Rank : 3
Schlafli Type : {24,24}
Number of vertices, edges, etc : 24, 288, 24
Order of s0s1s2 : 24
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,24}*576e, {24,12}*576e
3-fold quotients : {8,24}*384c, {24,8}*384c
4-fold quotients : {12,12}*288a
6-fold quotients : {4,24}*192b, {24,4}*192b, {8,12}*192b, {12,8}*192b
8-fold quotients : {6,12}*144a, {12,6}*144a
9-fold quotients : {8,8}*128d
12-fold quotients : {4,12}*96a, {12,4}*96a
16-fold quotients : {6,6}*72a
18-fold quotients : {4,8}*64b, {8,4}*64b
24-fold quotients : {2,12}*48, {12,2}*48, {4,6}*48a, {6,4}*48a
36-fold quotients : {4,4}*32
48-fold quotients : {2,6}*24, {6,2}*24
72-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {2,3}*12, {3,2}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,145)( 2,150)( 3,152)( 4,148)( 5,153)( 6,146)( 7,151)( 8,147)
( 9,149)( 10,154)( 11,159)( 12,161)( 13,157)( 14,162)( 15,155)( 16,160)
( 17,156)( 18,158)( 19,163)( 20,168)( 21,170)( 22,166)( 23,171)( 24,164)
( 25,169)( 26,165)( 27,167)( 28,172)( 29,177)( 30,179)( 31,175)( 32,180)
( 33,173)( 34,178)( 35,174)( 36,176)( 37,208)( 38,213)( 39,215)( 40,211)
( 41,216)( 42,209)( 43,214)( 44,210)( 45,212)( 46,199)( 47,204)( 48,206)
( 49,202)( 50,207)( 51,200)( 52,205)( 53,201)( 54,203)( 55,190)( 56,195)
( 57,197)( 58,193)( 59,198)( 60,191)( 61,196)( 62,192)( 63,194)( 64,181)
( 65,186)( 66,188)( 67,184)( 68,189)( 69,182)( 70,187)( 71,183)( 72,185)
( 73,226)( 74,231)( 75,233)( 76,229)( 77,234)( 78,227)( 79,232)( 80,228)
( 81,230)( 82,217)( 83,222)( 84,224)( 85,220)( 86,225)( 87,218)( 88,223)
( 89,219)( 90,221)( 91,244)( 92,249)( 93,251)( 94,247)( 95,252)( 96,245)
( 97,250)( 98,246)( 99,248)(100,235)(101,240)(102,242)(103,238)(104,243)
(105,236)(106,241)(107,237)(108,239)(109,271)(110,276)(111,278)(112,274)
(113,279)(114,272)(115,277)(116,273)(117,275)(118,280)(119,285)(120,287)
(121,283)(122,288)(123,281)(124,286)(125,282)(126,284)(127,253)(128,258)
(129,260)(130,256)(131,261)(132,254)(133,259)(134,255)(135,257)(136,262)
(137,267)(138,269)(139,265)(140,270)(141,263)(142,268)(143,264)(144,266)
(289,433)(290,438)(291,440)(292,436)(293,441)(294,434)(295,439)(296,435)
(297,437)(298,442)(299,447)(300,449)(301,445)(302,450)(303,443)(304,448)
(305,444)(306,446)(307,451)(308,456)(309,458)(310,454)(311,459)(312,452)
(313,457)(314,453)(315,455)(316,460)(317,465)(318,467)(319,463)(320,468)
(321,461)(322,466)(323,462)(324,464)(325,496)(326,501)(327,503)(328,499)
(329,504)(330,497)(331,502)(332,498)(333,500)(334,487)(335,492)(336,494)
(337,490)(338,495)(339,488)(340,493)(341,489)(342,491)(343,478)(344,483)
(345,485)(346,481)(347,486)(348,479)(349,484)(350,480)(351,482)(352,469)
(353,474)(354,476)(355,472)(356,477)(357,470)(358,475)(359,471)(360,473)
(361,514)(362,519)(363,521)(364,517)(365,522)(366,515)(367,520)(368,516)
(369,518)(370,505)(371,510)(372,512)(373,508)(374,513)(375,506)(376,511)
(377,507)(378,509)(379,532)(380,537)(381,539)(382,535)(383,540)(384,533)
(385,538)(386,534)(387,536)(388,523)(389,528)(390,530)(391,526)(392,531)
(393,524)(394,529)(395,525)(396,527)(397,559)(398,564)(399,566)(400,562)
(401,567)(402,560)(403,565)(404,561)(405,563)(406,568)(407,573)(408,575)
(409,571)(410,576)(411,569)(412,574)(413,570)(414,572)(415,541)(416,546)
(417,548)(418,544)(419,549)(420,542)(421,547)(422,543)(423,545)(424,550)
(425,555)(426,557)(427,553)(428,558)(429,551)(430,556)(431,552)(432,554);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)( 33, 36)
( 37, 65)( 38, 64)( 39, 66)( 40, 71)( 41, 70)( 42, 72)( 43, 68)( 44, 67)
( 45, 69)( 46, 56)( 47, 55)( 48, 57)( 49, 62)( 50, 61)( 51, 63)( 52, 59)
( 53, 58)( 54, 60)( 73, 92)( 74, 91)( 75, 93)( 76, 98)( 77, 97)( 78, 99)
( 79, 95)( 80, 94)( 81, 96)( 82,101)( 83,100)( 84,102)( 85,107)( 86,106)
( 87,108)( 88,104)( 89,103)( 90,105)(109,119)(110,118)(111,120)(112,125)
(113,124)(114,126)(115,122)(116,121)(117,123)(127,137)(128,136)(129,138)
(130,143)(131,142)(132,144)(133,140)(134,139)(135,141)(145,182)(146,181)
(147,183)(148,188)(149,187)(150,189)(151,185)(152,184)(153,186)(154,191)
(155,190)(156,192)(157,197)(158,196)(159,198)(160,194)(161,193)(162,195)
(163,200)(164,199)(165,201)(166,206)(167,205)(168,207)(169,203)(170,202)
(171,204)(172,209)(173,208)(174,210)(175,215)(176,214)(177,216)(178,212)
(179,211)(180,213)(217,272)(218,271)(219,273)(220,278)(221,277)(222,279)
(223,275)(224,274)(225,276)(226,281)(227,280)(228,282)(229,287)(230,286)
(231,288)(232,284)(233,283)(234,285)(235,254)(236,253)(237,255)(238,260)
(239,259)(240,261)(241,257)(242,256)(243,258)(244,263)(245,262)(246,264)
(247,269)(248,268)(249,270)(250,266)(251,265)(252,267)(289,362)(290,361)
(291,363)(292,368)(293,367)(294,369)(295,365)(296,364)(297,366)(298,371)
(299,370)(300,372)(301,377)(302,376)(303,378)(304,374)(305,373)(306,375)
(307,380)(308,379)(309,381)(310,386)(311,385)(312,387)(313,383)(314,382)
(315,384)(316,389)(317,388)(318,390)(319,395)(320,394)(321,396)(322,392)
(323,391)(324,393)(325,425)(326,424)(327,426)(328,431)(329,430)(330,432)
(331,428)(332,427)(333,429)(334,416)(335,415)(336,417)(337,422)(338,421)
(339,423)(340,419)(341,418)(342,420)(343,407)(344,406)(345,408)(346,413)
(347,412)(348,414)(349,410)(350,409)(351,411)(352,398)(353,397)(354,399)
(355,404)(356,403)(357,405)(358,401)(359,400)(360,402)(433,551)(434,550)
(435,552)(436,557)(437,556)(438,558)(439,554)(440,553)(441,555)(442,542)
(443,541)(444,543)(445,548)(446,547)(447,549)(448,545)(449,544)(450,546)
(451,569)(452,568)(453,570)(454,575)(455,574)(456,576)(457,572)(458,571)
(459,573)(460,560)(461,559)(462,561)(463,566)(464,565)(465,567)(466,563)
(467,562)(468,564)(469,515)(470,514)(471,516)(472,521)(473,520)(474,522)
(475,518)(476,517)(477,519)(478,506)(479,505)(480,507)(481,512)(482,511)
(483,513)(484,509)(485,508)(486,510)(487,533)(488,532)(489,534)(490,539)
(491,538)(492,540)(493,536)(494,535)(495,537)(496,524)(497,523)(498,525)
(499,530)(500,529)(501,531)(502,527)(503,526)(504,528);;
s2 := ( 1,433)( 2,440)( 3,438)( 4,439)( 5,437)( 6,435)( 7,436)( 8,434)
( 9,441)( 10,442)( 11,449)( 12,447)( 13,448)( 14,446)( 15,444)( 16,445)
( 17,443)( 18,450)( 19,451)( 20,458)( 21,456)( 22,457)( 23,455)( 24,453)
( 25,454)( 26,452)( 27,459)( 28,460)( 29,467)( 30,465)( 31,466)( 32,464)
( 33,462)( 34,463)( 35,461)( 36,468)( 37,487)( 38,494)( 39,492)( 40,493)
( 41,491)( 42,489)( 43,490)( 44,488)( 45,495)( 46,496)( 47,503)( 48,501)
( 49,502)( 50,500)( 51,498)( 52,499)( 53,497)( 54,504)( 55,469)( 56,476)
( 57,474)( 58,475)( 59,473)( 60,471)( 61,472)( 62,470)( 63,477)( 64,478)
( 65,485)( 66,483)( 67,484)( 68,482)( 69,480)( 70,481)( 71,479)( 72,486)
( 73,532)( 74,539)( 75,537)( 76,538)( 77,536)( 78,534)( 79,535)( 80,533)
( 81,540)( 82,523)( 83,530)( 84,528)( 85,529)( 86,527)( 87,525)( 88,526)
( 89,524)( 90,531)( 91,514)( 92,521)( 93,519)( 94,520)( 95,518)( 96,516)
( 97,517)( 98,515)( 99,522)(100,505)(101,512)(102,510)(103,511)(104,509)
(105,507)(106,508)(107,506)(108,513)(109,550)(110,557)(111,555)(112,556)
(113,554)(114,552)(115,553)(116,551)(117,558)(118,541)(119,548)(120,546)
(121,547)(122,545)(123,543)(124,544)(125,542)(126,549)(127,568)(128,575)
(129,573)(130,574)(131,572)(132,570)(133,571)(134,569)(135,576)(136,559)
(137,566)(138,564)(139,565)(140,563)(141,561)(142,562)(143,560)(144,567)
(145,289)(146,296)(147,294)(148,295)(149,293)(150,291)(151,292)(152,290)
(153,297)(154,298)(155,305)(156,303)(157,304)(158,302)(159,300)(160,301)
(161,299)(162,306)(163,307)(164,314)(165,312)(166,313)(167,311)(168,309)
(169,310)(170,308)(171,315)(172,316)(173,323)(174,321)(175,322)(176,320)
(177,318)(178,319)(179,317)(180,324)(181,343)(182,350)(183,348)(184,349)
(185,347)(186,345)(187,346)(188,344)(189,351)(190,352)(191,359)(192,357)
(193,358)(194,356)(195,354)(196,355)(197,353)(198,360)(199,325)(200,332)
(201,330)(202,331)(203,329)(204,327)(205,328)(206,326)(207,333)(208,334)
(209,341)(210,339)(211,340)(212,338)(213,336)(214,337)(215,335)(216,342)
(217,388)(218,395)(219,393)(220,394)(221,392)(222,390)(223,391)(224,389)
(225,396)(226,379)(227,386)(228,384)(229,385)(230,383)(231,381)(232,382)
(233,380)(234,387)(235,370)(236,377)(237,375)(238,376)(239,374)(240,372)
(241,373)(242,371)(243,378)(244,361)(245,368)(246,366)(247,367)(248,365)
(249,363)(250,364)(251,362)(252,369)(253,406)(254,413)(255,411)(256,412)
(257,410)(258,408)(259,409)(260,407)(261,414)(262,397)(263,404)(264,402)
(265,403)(266,401)(267,399)(268,400)(269,398)(270,405)(271,424)(272,431)
(273,429)(274,430)(275,428)(276,426)(277,427)(278,425)(279,432)(280,415)
(281,422)(282,420)(283,421)(284,419)(285,417)(286,418)(287,416)(288,423);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1,145)( 2,150)( 3,152)( 4,148)( 5,153)( 6,146)( 7,151)
( 8,147)( 9,149)( 10,154)( 11,159)( 12,161)( 13,157)( 14,162)( 15,155)
( 16,160)( 17,156)( 18,158)( 19,163)( 20,168)( 21,170)( 22,166)( 23,171)
( 24,164)( 25,169)( 26,165)( 27,167)( 28,172)( 29,177)( 30,179)( 31,175)
( 32,180)( 33,173)( 34,178)( 35,174)( 36,176)( 37,208)( 38,213)( 39,215)
( 40,211)( 41,216)( 42,209)( 43,214)( 44,210)( 45,212)( 46,199)( 47,204)
( 48,206)( 49,202)( 50,207)( 51,200)( 52,205)( 53,201)( 54,203)( 55,190)
( 56,195)( 57,197)( 58,193)( 59,198)( 60,191)( 61,196)( 62,192)( 63,194)
( 64,181)( 65,186)( 66,188)( 67,184)( 68,189)( 69,182)( 70,187)( 71,183)
( 72,185)( 73,226)( 74,231)( 75,233)( 76,229)( 77,234)( 78,227)( 79,232)
( 80,228)( 81,230)( 82,217)( 83,222)( 84,224)( 85,220)( 86,225)( 87,218)
( 88,223)( 89,219)( 90,221)( 91,244)( 92,249)( 93,251)( 94,247)( 95,252)
( 96,245)( 97,250)( 98,246)( 99,248)(100,235)(101,240)(102,242)(103,238)
(104,243)(105,236)(106,241)(107,237)(108,239)(109,271)(110,276)(111,278)
(112,274)(113,279)(114,272)(115,277)(116,273)(117,275)(118,280)(119,285)
(120,287)(121,283)(122,288)(123,281)(124,286)(125,282)(126,284)(127,253)
(128,258)(129,260)(130,256)(131,261)(132,254)(133,259)(134,255)(135,257)
(136,262)(137,267)(138,269)(139,265)(140,270)(141,263)(142,268)(143,264)
(144,266)(289,433)(290,438)(291,440)(292,436)(293,441)(294,434)(295,439)
(296,435)(297,437)(298,442)(299,447)(300,449)(301,445)(302,450)(303,443)
(304,448)(305,444)(306,446)(307,451)(308,456)(309,458)(310,454)(311,459)
(312,452)(313,457)(314,453)(315,455)(316,460)(317,465)(318,467)(319,463)
(320,468)(321,461)(322,466)(323,462)(324,464)(325,496)(326,501)(327,503)
(328,499)(329,504)(330,497)(331,502)(332,498)(333,500)(334,487)(335,492)
(336,494)(337,490)(338,495)(339,488)(340,493)(341,489)(342,491)(343,478)
(344,483)(345,485)(346,481)(347,486)(348,479)(349,484)(350,480)(351,482)
(352,469)(353,474)(354,476)(355,472)(356,477)(357,470)(358,475)(359,471)
(360,473)(361,514)(362,519)(363,521)(364,517)(365,522)(366,515)(367,520)
(368,516)(369,518)(370,505)(371,510)(372,512)(373,508)(374,513)(375,506)
(376,511)(377,507)(378,509)(379,532)(380,537)(381,539)(382,535)(383,540)
(384,533)(385,538)(386,534)(387,536)(388,523)(389,528)(390,530)(391,526)
(392,531)(393,524)(394,529)(395,525)(396,527)(397,559)(398,564)(399,566)
(400,562)(401,567)(402,560)(403,565)(404,561)(405,563)(406,568)(407,573)
(408,575)(409,571)(410,576)(411,569)(412,574)(413,570)(414,572)(415,541)
(416,546)(417,548)(418,544)(419,549)(420,542)(421,547)(422,543)(423,545)
(424,550)(425,555)(426,557)(427,553)(428,558)(429,551)(430,556)(431,552)
(432,554);
s1 := Sym(576)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)
( 33, 36)( 37, 65)( 38, 64)( 39, 66)( 40, 71)( 41, 70)( 42, 72)( 43, 68)
( 44, 67)( 45, 69)( 46, 56)( 47, 55)( 48, 57)( 49, 62)( 50, 61)( 51, 63)
( 52, 59)( 53, 58)( 54, 60)( 73, 92)( 74, 91)( 75, 93)( 76, 98)( 77, 97)
( 78, 99)( 79, 95)( 80, 94)( 81, 96)( 82,101)( 83,100)( 84,102)( 85,107)
( 86,106)( 87,108)( 88,104)( 89,103)( 90,105)(109,119)(110,118)(111,120)
(112,125)(113,124)(114,126)(115,122)(116,121)(117,123)(127,137)(128,136)
(129,138)(130,143)(131,142)(132,144)(133,140)(134,139)(135,141)(145,182)
(146,181)(147,183)(148,188)(149,187)(150,189)(151,185)(152,184)(153,186)
(154,191)(155,190)(156,192)(157,197)(158,196)(159,198)(160,194)(161,193)
(162,195)(163,200)(164,199)(165,201)(166,206)(167,205)(168,207)(169,203)
(170,202)(171,204)(172,209)(173,208)(174,210)(175,215)(176,214)(177,216)
(178,212)(179,211)(180,213)(217,272)(218,271)(219,273)(220,278)(221,277)
(222,279)(223,275)(224,274)(225,276)(226,281)(227,280)(228,282)(229,287)
(230,286)(231,288)(232,284)(233,283)(234,285)(235,254)(236,253)(237,255)
(238,260)(239,259)(240,261)(241,257)(242,256)(243,258)(244,263)(245,262)
(246,264)(247,269)(248,268)(249,270)(250,266)(251,265)(252,267)(289,362)
(290,361)(291,363)(292,368)(293,367)(294,369)(295,365)(296,364)(297,366)
(298,371)(299,370)(300,372)(301,377)(302,376)(303,378)(304,374)(305,373)
(306,375)(307,380)(308,379)(309,381)(310,386)(311,385)(312,387)(313,383)
(314,382)(315,384)(316,389)(317,388)(318,390)(319,395)(320,394)(321,396)
(322,392)(323,391)(324,393)(325,425)(326,424)(327,426)(328,431)(329,430)
(330,432)(331,428)(332,427)(333,429)(334,416)(335,415)(336,417)(337,422)
(338,421)(339,423)(340,419)(341,418)(342,420)(343,407)(344,406)(345,408)
(346,413)(347,412)(348,414)(349,410)(350,409)(351,411)(352,398)(353,397)
(354,399)(355,404)(356,403)(357,405)(358,401)(359,400)(360,402)(433,551)
(434,550)(435,552)(436,557)(437,556)(438,558)(439,554)(440,553)(441,555)
(442,542)(443,541)(444,543)(445,548)(446,547)(447,549)(448,545)(449,544)
(450,546)(451,569)(452,568)(453,570)(454,575)(455,574)(456,576)(457,572)
(458,571)(459,573)(460,560)(461,559)(462,561)(463,566)(464,565)(465,567)
(466,563)(467,562)(468,564)(469,515)(470,514)(471,516)(472,521)(473,520)
(474,522)(475,518)(476,517)(477,519)(478,506)(479,505)(480,507)(481,512)
(482,511)(483,513)(484,509)(485,508)(486,510)(487,533)(488,532)(489,534)
(490,539)(491,538)(492,540)(493,536)(494,535)(495,537)(496,524)(497,523)
(498,525)(499,530)(500,529)(501,531)(502,527)(503,526)(504,528);
s2 := Sym(576)!( 1,433)( 2,440)( 3,438)( 4,439)( 5,437)( 6,435)( 7,436)
( 8,434)( 9,441)( 10,442)( 11,449)( 12,447)( 13,448)( 14,446)( 15,444)
( 16,445)( 17,443)( 18,450)( 19,451)( 20,458)( 21,456)( 22,457)( 23,455)
( 24,453)( 25,454)( 26,452)( 27,459)( 28,460)( 29,467)( 30,465)( 31,466)
( 32,464)( 33,462)( 34,463)( 35,461)( 36,468)( 37,487)( 38,494)( 39,492)
( 40,493)( 41,491)( 42,489)( 43,490)( 44,488)( 45,495)( 46,496)( 47,503)
( 48,501)( 49,502)( 50,500)( 51,498)( 52,499)( 53,497)( 54,504)( 55,469)
( 56,476)( 57,474)( 58,475)( 59,473)( 60,471)( 61,472)( 62,470)( 63,477)
( 64,478)( 65,485)( 66,483)( 67,484)( 68,482)( 69,480)( 70,481)( 71,479)
( 72,486)( 73,532)( 74,539)( 75,537)( 76,538)( 77,536)( 78,534)( 79,535)
( 80,533)( 81,540)( 82,523)( 83,530)( 84,528)( 85,529)( 86,527)( 87,525)
( 88,526)( 89,524)( 90,531)( 91,514)( 92,521)( 93,519)( 94,520)( 95,518)
( 96,516)( 97,517)( 98,515)( 99,522)(100,505)(101,512)(102,510)(103,511)
(104,509)(105,507)(106,508)(107,506)(108,513)(109,550)(110,557)(111,555)
(112,556)(113,554)(114,552)(115,553)(116,551)(117,558)(118,541)(119,548)
(120,546)(121,547)(122,545)(123,543)(124,544)(125,542)(126,549)(127,568)
(128,575)(129,573)(130,574)(131,572)(132,570)(133,571)(134,569)(135,576)
(136,559)(137,566)(138,564)(139,565)(140,563)(141,561)(142,562)(143,560)
(144,567)(145,289)(146,296)(147,294)(148,295)(149,293)(150,291)(151,292)
(152,290)(153,297)(154,298)(155,305)(156,303)(157,304)(158,302)(159,300)
(160,301)(161,299)(162,306)(163,307)(164,314)(165,312)(166,313)(167,311)
(168,309)(169,310)(170,308)(171,315)(172,316)(173,323)(174,321)(175,322)
(176,320)(177,318)(178,319)(179,317)(180,324)(181,343)(182,350)(183,348)
(184,349)(185,347)(186,345)(187,346)(188,344)(189,351)(190,352)(191,359)
(192,357)(193,358)(194,356)(195,354)(196,355)(197,353)(198,360)(199,325)
(200,332)(201,330)(202,331)(203,329)(204,327)(205,328)(206,326)(207,333)
(208,334)(209,341)(210,339)(211,340)(212,338)(213,336)(214,337)(215,335)
(216,342)(217,388)(218,395)(219,393)(220,394)(221,392)(222,390)(223,391)
(224,389)(225,396)(226,379)(227,386)(228,384)(229,385)(230,383)(231,381)
(232,382)(233,380)(234,387)(235,370)(236,377)(237,375)(238,376)(239,374)
(240,372)(241,373)(242,371)(243,378)(244,361)(245,368)(246,366)(247,367)
(248,365)(249,363)(250,364)(251,362)(252,369)(253,406)(254,413)(255,411)
(256,412)(257,410)(258,408)(259,409)(260,407)(261,414)(262,397)(263,404)
(264,402)(265,403)(266,401)(267,399)(268,400)(269,398)(270,405)(271,424)
(272,431)(273,429)(274,430)(275,428)(276,426)(277,427)(278,425)(279,432)
(280,415)(281,422)(282,420)(283,421)(284,419)(285,417)(286,418)(287,416)
(288,423);
poly := sub<Sym(576)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope