Polytope of Type {4,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,36}*1152b
if this polytope has a name.
Group : SmallGroup(1152,153957)
Rank : 3
Schlafli Type : {4,36}
Number of vertices, edges, etc : 16, 288, 144
Order of s0s1s2 : 36
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,18}*576a
   3-fold quotients : {4,12}*384b
   4-fold quotients : {4,36}*288b
   6-fold quotients : {4,6}*192a
   8-fold quotients : {4,18}*144b
   12-fold quotients : {4,12}*96b
   16-fold quotients : {4,9}*72
   24-fold quotients : {4,6}*48c
   48-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)(  8, 16)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)
(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)
(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)
(145,153)(146,154)(147,155)(148,156)(149,157)(150,158)(151,159)(152,160)
(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)
(177,185)(178,186)(179,187)(180,188)(181,189)(182,190)(183,191)(184,192)
(193,201)(194,202)(195,203)(196,204)(197,205)(198,206)(199,207)(200,208)
(209,217)(210,218)(211,219)(212,220)(213,221)(214,222)(215,223)(216,224)
(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)
(241,249)(242,250)(243,251)(244,252)(245,253)(246,254)(247,255)(248,256)
(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)
(273,281)(274,282)(275,283)(276,284)(277,285)(278,286)(279,287)(280,288)
(289,297)(290,298)(291,299)(292,300)(293,301)(294,302)(295,303)(296,304)
(305,313)(306,314)(307,315)(308,316)(309,317)(310,318)(311,319)(312,320)
(321,329)(322,330)(323,331)(324,332)(325,333)(326,334)(327,335)(328,336)
(337,345)(338,346)(339,347)(340,348)(341,349)(342,350)(343,351)(344,352)
(353,361)(354,362)(355,363)(356,364)(357,365)(358,366)(359,367)(360,368)
(369,377)(370,378)(371,379)(372,380)(373,381)(374,382)(375,383)(376,384)
(385,393)(386,394)(387,395)(388,396)(389,397)(390,398)(391,399)(392,400)
(401,409)(402,410)(403,411)(404,412)(405,413)(406,414)(407,415)(408,416)
(417,425)(418,426)(419,427)(420,428)(421,429)(422,430)(423,431)(424,432)
(433,441)(434,442)(435,443)(436,444)(437,445)(438,446)(439,447)(440,448)
(449,457)(450,458)(451,459)(452,460)(453,461)(454,462)(455,463)(456,464)
(465,473)(466,474)(467,475)(468,476)(469,477)(470,478)(471,479)(472,480)
(481,489)(482,490)(483,491)(484,492)(485,493)(486,494)(487,495)(488,496)
(497,505)(498,506)(499,507)(500,508)(501,509)(502,510)(503,511)(504,512)
(513,521)(514,522)(515,523)(516,524)(517,525)(518,526)(519,527)(520,528)
(529,537)(530,538)(531,539)(532,540)(533,541)(534,542)(535,543)(536,544)
(545,553)(546,554)(547,555)(548,556)(549,557)(550,558)(551,559)(552,560)
(561,569)(562,570)(563,571)(564,572)(565,573)(566,574)(567,575)(568,576);;
s1 := (  1,289)(  2,290)(  3,292)(  4,291)(  5,294)(  6,293)(  7,295)(  8,296)
(  9,304)( 10,303)( 11,301)( 12,302)( 13,299)( 14,300)( 15,298)( 16,297)
( 17,321)( 18,322)( 19,324)( 20,323)( 21,326)( 22,325)( 23,327)( 24,328)
( 25,336)( 26,335)( 27,333)( 28,334)( 29,331)( 30,332)( 31,330)( 32,329)
( 33,305)( 34,306)( 35,308)( 36,307)( 37,310)( 38,309)( 39,311)( 40,312)
( 41,320)( 42,319)( 43,317)( 44,318)( 45,315)( 46,316)( 47,314)( 48,313)
( 49,417)( 50,418)( 51,420)( 52,419)( 53,422)( 54,421)( 55,423)( 56,424)
( 57,432)( 58,431)( 59,429)( 60,430)( 61,427)( 62,428)( 63,426)( 64,425)
( 65,401)( 66,402)( 67,404)( 68,403)( 69,406)( 70,405)( 71,407)( 72,408)
( 73,416)( 74,415)( 75,413)( 76,414)( 77,411)( 78,412)( 79,410)( 80,409)
( 81,385)( 82,386)( 83,388)( 84,387)( 85,390)( 86,389)( 87,391)( 88,392)
( 89,400)( 90,399)( 91,397)( 92,398)( 93,395)( 94,396)( 95,394)( 96,393)
( 97,369)( 98,370)( 99,372)(100,371)(101,374)(102,373)(103,375)(104,376)
(105,384)(106,383)(107,381)(108,382)(109,379)(110,380)(111,378)(112,377)
(113,353)(114,354)(115,356)(116,355)(117,358)(118,357)(119,359)(120,360)
(121,368)(122,367)(123,365)(124,366)(125,363)(126,364)(127,362)(128,361)
(129,337)(130,338)(131,340)(132,339)(133,342)(134,341)(135,343)(136,344)
(137,352)(138,351)(139,349)(140,350)(141,347)(142,348)(143,346)(144,345)
(145,433)(146,434)(147,436)(148,435)(149,438)(150,437)(151,439)(152,440)
(153,448)(154,447)(155,445)(156,446)(157,443)(158,444)(159,442)(160,441)
(161,465)(162,466)(163,468)(164,467)(165,470)(166,469)(167,471)(168,472)
(169,480)(170,479)(171,477)(172,478)(173,475)(174,476)(175,474)(176,473)
(177,449)(178,450)(179,452)(180,451)(181,454)(182,453)(183,455)(184,456)
(185,464)(186,463)(187,461)(188,462)(189,459)(190,460)(191,458)(192,457)
(193,561)(194,562)(195,564)(196,563)(197,566)(198,565)(199,567)(200,568)
(201,576)(202,575)(203,573)(204,574)(205,571)(206,572)(207,570)(208,569)
(209,545)(210,546)(211,548)(212,547)(213,550)(214,549)(215,551)(216,552)
(217,560)(218,559)(219,557)(220,558)(221,555)(222,556)(223,554)(224,553)
(225,529)(226,530)(227,532)(228,531)(229,534)(230,533)(231,535)(232,536)
(233,544)(234,543)(235,541)(236,542)(237,539)(238,540)(239,538)(240,537)
(241,513)(242,514)(243,516)(244,515)(245,518)(246,517)(247,519)(248,520)
(249,528)(250,527)(251,525)(252,526)(253,523)(254,524)(255,522)(256,521)
(257,497)(258,498)(259,500)(260,499)(261,502)(262,501)(263,503)(264,504)
(265,512)(266,511)(267,509)(268,510)(269,507)(270,508)(271,506)(272,505)
(273,481)(274,482)(275,484)(276,483)(277,486)(278,485)(279,487)(280,488)
(281,496)(282,495)(283,493)(284,494)(285,491)(286,492)(287,490)(288,489);;
s2 := (  1, 49)(  2, 52)(  3, 51)(  4, 50)(  5, 61)(  6, 64)(  7, 63)(  8, 62)
(  9, 57)( 10, 60)( 11, 59)( 12, 58)( 13, 53)( 14, 56)( 15, 55)( 16, 54)
( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 93)( 22, 96)( 23, 95)( 24, 94)
( 25, 89)( 26, 92)( 27, 91)( 28, 90)( 29, 85)( 30, 88)( 31, 87)( 32, 86)
( 33, 65)( 34, 68)( 35, 67)( 36, 66)( 37, 77)( 38, 80)( 39, 79)( 40, 78)
( 41, 73)( 42, 76)( 43, 75)( 44, 74)( 45, 69)( 46, 72)( 47, 71)( 48, 70)
( 97,129)( 98,132)( 99,131)(100,130)(101,141)(102,144)(103,143)(104,142)
(105,137)(106,140)(107,139)(108,138)(109,133)(110,136)(111,135)(112,134)
(114,116)(117,125)(118,128)(119,127)(120,126)(122,124)(145,193)(146,196)
(147,195)(148,194)(149,205)(150,208)(151,207)(152,206)(153,201)(154,204)
(155,203)(156,202)(157,197)(158,200)(159,199)(160,198)(161,225)(162,228)
(163,227)(164,226)(165,237)(166,240)(167,239)(168,238)(169,233)(170,236)
(171,235)(172,234)(173,229)(174,232)(175,231)(176,230)(177,209)(178,212)
(179,211)(180,210)(181,221)(182,224)(183,223)(184,222)(185,217)(186,220)
(187,219)(188,218)(189,213)(190,216)(191,215)(192,214)(241,273)(242,276)
(243,275)(244,274)(245,285)(246,288)(247,287)(248,286)(249,281)(250,284)
(251,283)(252,282)(253,277)(254,280)(255,279)(256,278)(258,260)(261,269)
(262,272)(263,271)(264,270)(266,268)(289,481)(290,484)(291,483)(292,482)
(293,493)(294,496)(295,495)(296,494)(297,489)(298,492)(299,491)(300,490)
(301,485)(302,488)(303,487)(304,486)(305,513)(306,516)(307,515)(308,514)
(309,525)(310,528)(311,527)(312,526)(313,521)(314,524)(315,523)(316,522)
(317,517)(318,520)(319,519)(320,518)(321,497)(322,500)(323,499)(324,498)
(325,509)(326,512)(327,511)(328,510)(329,505)(330,508)(331,507)(332,506)
(333,501)(334,504)(335,503)(336,502)(337,433)(338,436)(339,435)(340,434)
(341,445)(342,448)(343,447)(344,446)(345,441)(346,444)(347,443)(348,442)
(349,437)(350,440)(351,439)(352,438)(353,465)(354,468)(355,467)(356,466)
(357,477)(358,480)(359,479)(360,478)(361,473)(362,476)(363,475)(364,474)
(365,469)(366,472)(367,471)(368,470)(369,449)(370,452)(371,451)(372,450)
(373,461)(374,464)(375,463)(376,462)(377,457)(378,460)(379,459)(380,458)
(381,453)(382,456)(383,455)(384,454)(385,561)(386,564)(387,563)(388,562)
(389,573)(390,576)(391,575)(392,574)(393,569)(394,572)(395,571)(396,570)
(397,565)(398,568)(399,567)(400,566)(401,545)(402,548)(403,547)(404,546)
(405,557)(406,560)(407,559)(408,558)(409,553)(410,556)(411,555)(412,554)
(413,549)(414,552)(415,551)(416,550)(417,529)(418,532)(419,531)(420,530)
(421,541)(422,544)(423,543)(424,542)(425,537)(426,540)(427,539)(428,538)
(429,533)(430,536)(431,535)(432,534);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)
(  8, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)
( 40, 48)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)
( 56, 64)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)
( 72, 80)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)
(104,112)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)
(120,128)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)
(136,144)(145,153)(146,154)(147,155)(148,156)(149,157)(150,158)(151,159)
(152,160)(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)
(168,176)(177,185)(178,186)(179,187)(180,188)(181,189)(182,190)(183,191)
(184,192)(193,201)(194,202)(195,203)(196,204)(197,205)(198,206)(199,207)
(200,208)(209,217)(210,218)(211,219)(212,220)(213,221)(214,222)(215,223)
(216,224)(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)
(232,240)(241,249)(242,250)(243,251)(244,252)(245,253)(246,254)(247,255)
(248,256)(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)
(264,272)(273,281)(274,282)(275,283)(276,284)(277,285)(278,286)(279,287)
(280,288)(289,297)(290,298)(291,299)(292,300)(293,301)(294,302)(295,303)
(296,304)(305,313)(306,314)(307,315)(308,316)(309,317)(310,318)(311,319)
(312,320)(321,329)(322,330)(323,331)(324,332)(325,333)(326,334)(327,335)
(328,336)(337,345)(338,346)(339,347)(340,348)(341,349)(342,350)(343,351)
(344,352)(353,361)(354,362)(355,363)(356,364)(357,365)(358,366)(359,367)
(360,368)(369,377)(370,378)(371,379)(372,380)(373,381)(374,382)(375,383)
(376,384)(385,393)(386,394)(387,395)(388,396)(389,397)(390,398)(391,399)
(392,400)(401,409)(402,410)(403,411)(404,412)(405,413)(406,414)(407,415)
(408,416)(417,425)(418,426)(419,427)(420,428)(421,429)(422,430)(423,431)
(424,432)(433,441)(434,442)(435,443)(436,444)(437,445)(438,446)(439,447)
(440,448)(449,457)(450,458)(451,459)(452,460)(453,461)(454,462)(455,463)
(456,464)(465,473)(466,474)(467,475)(468,476)(469,477)(470,478)(471,479)
(472,480)(481,489)(482,490)(483,491)(484,492)(485,493)(486,494)(487,495)
(488,496)(497,505)(498,506)(499,507)(500,508)(501,509)(502,510)(503,511)
(504,512)(513,521)(514,522)(515,523)(516,524)(517,525)(518,526)(519,527)
(520,528)(529,537)(530,538)(531,539)(532,540)(533,541)(534,542)(535,543)
(536,544)(545,553)(546,554)(547,555)(548,556)(549,557)(550,558)(551,559)
(552,560)(561,569)(562,570)(563,571)(564,572)(565,573)(566,574)(567,575)
(568,576);
s1 := Sym(576)!(  1,289)(  2,290)(  3,292)(  4,291)(  5,294)(  6,293)(  7,295)
(  8,296)(  9,304)( 10,303)( 11,301)( 12,302)( 13,299)( 14,300)( 15,298)
( 16,297)( 17,321)( 18,322)( 19,324)( 20,323)( 21,326)( 22,325)( 23,327)
( 24,328)( 25,336)( 26,335)( 27,333)( 28,334)( 29,331)( 30,332)( 31,330)
( 32,329)( 33,305)( 34,306)( 35,308)( 36,307)( 37,310)( 38,309)( 39,311)
( 40,312)( 41,320)( 42,319)( 43,317)( 44,318)( 45,315)( 46,316)( 47,314)
( 48,313)( 49,417)( 50,418)( 51,420)( 52,419)( 53,422)( 54,421)( 55,423)
( 56,424)( 57,432)( 58,431)( 59,429)( 60,430)( 61,427)( 62,428)( 63,426)
( 64,425)( 65,401)( 66,402)( 67,404)( 68,403)( 69,406)( 70,405)( 71,407)
( 72,408)( 73,416)( 74,415)( 75,413)( 76,414)( 77,411)( 78,412)( 79,410)
( 80,409)( 81,385)( 82,386)( 83,388)( 84,387)( 85,390)( 86,389)( 87,391)
( 88,392)( 89,400)( 90,399)( 91,397)( 92,398)( 93,395)( 94,396)( 95,394)
( 96,393)( 97,369)( 98,370)( 99,372)(100,371)(101,374)(102,373)(103,375)
(104,376)(105,384)(106,383)(107,381)(108,382)(109,379)(110,380)(111,378)
(112,377)(113,353)(114,354)(115,356)(116,355)(117,358)(118,357)(119,359)
(120,360)(121,368)(122,367)(123,365)(124,366)(125,363)(126,364)(127,362)
(128,361)(129,337)(130,338)(131,340)(132,339)(133,342)(134,341)(135,343)
(136,344)(137,352)(138,351)(139,349)(140,350)(141,347)(142,348)(143,346)
(144,345)(145,433)(146,434)(147,436)(148,435)(149,438)(150,437)(151,439)
(152,440)(153,448)(154,447)(155,445)(156,446)(157,443)(158,444)(159,442)
(160,441)(161,465)(162,466)(163,468)(164,467)(165,470)(166,469)(167,471)
(168,472)(169,480)(170,479)(171,477)(172,478)(173,475)(174,476)(175,474)
(176,473)(177,449)(178,450)(179,452)(180,451)(181,454)(182,453)(183,455)
(184,456)(185,464)(186,463)(187,461)(188,462)(189,459)(190,460)(191,458)
(192,457)(193,561)(194,562)(195,564)(196,563)(197,566)(198,565)(199,567)
(200,568)(201,576)(202,575)(203,573)(204,574)(205,571)(206,572)(207,570)
(208,569)(209,545)(210,546)(211,548)(212,547)(213,550)(214,549)(215,551)
(216,552)(217,560)(218,559)(219,557)(220,558)(221,555)(222,556)(223,554)
(224,553)(225,529)(226,530)(227,532)(228,531)(229,534)(230,533)(231,535)
(232,536)(233,544)(234,543)(235,541)(236,542)(237,539)(238,540)(239,538)
(240,537)(241,513)(242,514)(243,516)(244,515)(245,518)(246,517)(247,519)
(248,520)(249,528)(250,527)(251,525)(252,526)(253,523)(254,524)(255,522)
(256,521)(257,497)(258,498)(259,500)(260,499)(261,502)(262,501)(263,503)
(264,504)(265,512)(266,511)(267,509)(268,510)(269,507)(270,508)(271,506)
(272,505)(273,481)(274,482)(275,484)(276,483)(277,486)(278,485)(279,487)
(280,488)(281,496)(282,495)(283,493)(284,494)(285,491)(286,492)(287,490)
(288,489);
s2 := Sym(576)!(  1, 49)(  2, 52)(  3, 51)(  4, 50)(  5, 61)(  6, 64)(  7, 63)
(  8, 62)(  9, 57)( 10, 60)( 11, 59)( 12, 58)( 13, 53)( 14, 56)( 15, 55)
( 16, 54)( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 93)( 22, 96)( 23, 95)
( 24, 94)( 25, 89)( 26, 92)( 27, 91)( 28, 90)( 29, 85)( 30, 88)( 31, 87)
( 32, 86)( 33, 65)( 34, 68)( 35, 67)( 36, 66)( 37, 77)( 38, 80)( 39, 79)
( 40, 78)( 41, 73)( 42, 76)( 43, 75)( 44, 74)( 45, 69)( 46, 72)( 47, 71)
( 48, 70)( 97,129)( 98,132)( 99,131)(100,130)(101,141)(102,144)(103,143)
(104,142)(105,137)(106,140)(107,139)(108,138)(109,133)(110,136)(111,135)
(112,134)(114,116)(117,125)(118,128)(119,127)(120,126)(122,124)(145,193)
(146,196)(147,195)(148,194)(149,205)(150,208)(151,207)(152,206)(153,201)
(154,204)(155,203)(156,202)(157,197)(158,200)(159,199)(160,198)(161,225)
(162,228)(163,227)(164,226)(165,237)(166,240)(167,239)(168,238)(169,233)
(170,236)(171,235)(172,234)(173,229)(174,232)(175,231)(176,230)(177,209)
(178,212)(179,211)(180,210)(181,221)(182,224)(183,223)(184,222)(185,217)
(186,220)(187,219)(188,218)(189,213)(190,216)(191,215)(192,214)(241,273)
(242,276)(243,275)(244,274)(245,285)(246,288)(247,287)(248,286)(249,281)
(250,284)(251,283)(252,282)(253,277)(254,280)(255,279)(256,278)(258,260)
(261,269)(262,272)(263,271)(264,270)(266,268)(289,481)(290,484)(291,483)
(292,482)(293,493)(294,496)(295,495)(296,494)(297,489)(298,492)(299,491)
(300,490)(301,485)(302,488)(303,487)(304,486)(305,513)(306,516)(307,515)
(308,514)(309,525)(310,528)(311,527)(312,526)(313,521)(314,524)(315,523)
(316,522)(317,517)(318,520)(319,519)(320,518)(321,497)(322,500)(323,499)
(324,498)(325,509)(326,512)(327,511)(328,510)(329,505)(330,508)(331,507)
(332,506)(333,501)(334,504)(335,503)(336,502)(337,433)(338,436)(339,435)
(340,434)(341,445)(342,448)(343,447)(344,446)(345,441)(346,444)(347,443)
(348,442)(349,437)(350,440)(351,439)(352,438)(353,465)(354,468)(355,467)
(356,466)(357,477)(358,480)(359,479)(360,478)(361,473)(362,476)(363,475)
(364,474)(365,469)(366,472)(367,471)(368,470)(369,449)(370,452)(371,451)
(372,450)(373,461)(374,464)(375,463)(376,462)(377,457)(378,460)(379,459)
(380,458)(381,453)(382,456)(383,455)(384,454)(385,561)(386,564)(387,563)
(388,562)(389,573)(390,576)(391,575)(392,574)(393,569)(394,572)(395,571)
(396,570)(397,565)(398,568)(399,567)(400,566)(401,545)(402,548)(403,547)
(404,546)(405,557)(406,560)(407,559)(408,558)(409,553)(410,556)(411,555)
(412,554)(413,549)(414,552)(415,551)(416,550)(417,529)(418,532)(419,531)
(420,530)(421,541)(422,544)(423,543)(424,542)(425,537)(426,540)(427,539)
(428,538)(429,533)(430,536)(431,535)(432,534);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope