Polytope of Type {8,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,36}*1152h
if this polytope has a name.
Group : SmallGroup(1152,154321)
Rank : 3
Schlafli Type : {8,36}
Number of vertices, edges, etc : 16, 288, 72
Order of s0s1s2 : 36
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,36}*576c, {8,18}*576b
   3-fold quotients : {8,12}*384h
   4-fold quotients : {8,9}*288, {4,18}*288
   6-fold quotients : {4,12}*192c, {8,6}*192b
   8-fold quotients : {4,9}*144, {4,18}*144b, {4,18}*144c
   12-fold quotients : {8,3}*96, {4,6}*96
   16-fold quotients : {4,9}*72, {2,18}*72
   24-fold quotients : {4,3}*48, {4,6}*48b, {4,6}*48c
   32-fold quotients : {2,9}*36
   48-fold quotients : {4,3}*24, {2,6}*24
   96-fold quotients : {2,3}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,293)(  2,294)(  3,296)(  4,295)(  5,290)(  6,289)(  7,291)(  8,292)
(  9,301)( 10,302)( 11,304)( 12,303)( 13,298)( 14,297)( 15,299)( 16,300)
( 17,309)( 18,310)( 19,312)( 20,311)( 21,306)( 22,305)( 23,307)( 24,308)
( 25,317)( 26,318)( 27,320)( 28,319)( 29,314)( 30,313)( 31,315)( 32,316)
( 33,325)( 34,326)( 35,328)( 36,327)( 37,322)( 38,321)( 39,323)( 40,324)
( 41,333)( 42,334)( 43,336)( 44,335)( 45,330)( 46,329)( 47,331)( 48,332)
( 49,341)( 50,342)( 51,344)( 52,343)( 53,338)( 54,337)( 55,339)( 56,340)
( 57,349)( 58,350)( 59,352)( 60,351)( 61,346)( 62,345)( 63,347)( 64,348)
( 65,357)( 66,358)( 67,360)( 68,359)( 69,354)( 70,353)( 71,355)( 72,356)
( 73,365)( 74,366)( 75,368)( 76,367)( 77,362)( 78,361)( 79,363)( 80,364)
( 81,373)( 82,374)( 83,376)( 84,375)( 85,370)( 86,369)( 87,371)( 88,372)
( 89,381)( 90,382)( 91,384)( 92,383)( 93,378)( 94,377)( 95,379)( 96,380)
( 97,389)( 98,390)( 99,392)(100,391)(101,386)(102,385)(103,387)(104,388)
(105,397)(106,398)(107,400)(108,399)(109,394)(110,393)(111,395)(112,396)
(113,405)(114,406)(115,408)(116,407)(117,402)(118,401)(119,403)(120,404)
(121,413)(122,414)(123,416)(124,415)(125,410)(126,409)(127,411)(128,412)
(129,421)(130,422)(131,424)(132,423)(133,418)(134,417)(135,419)(136,420)
(137,429)(138,430)(139,432)(140,431)(141,426)(142,425)(143,427)(144,428)
(145,509)(146,510)(147,512)(148,511)(149,506)(150,505)(151,507)(152,508)
(153,517)(154,518)(155,520)(156,519)(157,514)(158,513)(159,515)(160,516)
(161,525)(162,526)(163,528)(164,527)(165,522)(166,521)(167,523)(168,524)
(169,533)(170,534)(171,536)(172,535)(173,530)(174,529)(175,531)(176,532)
(177,541)(178,542)(179,544)(180,543)(181,538)(182,537)(183,539)(184,540)
(185,549)(186,550)(187,552)(188,551)(189,546)(190,545)(191,547)(192,548)
(193,557)(194,558)(195,560)(196,559)(197,554)(198,553)(199,555)(200,556)
(201,565)(202,566)(203,568)(204,567)(205,562)(206,561)(207,563)(208,564)
(209,573)(210,574)(211,576)(212,575)(213,570)(214,569)(215,571)(216,572)
(217,437)(218,438)(219,440)(220,439)(221,434)(222,433)(223,435)(224,436)
(225,445)(226,446)(227,448)(228,447)(229,442)(230,441)(231,443)(232,444)
(233,453)(234,454)(235,456)(236,455)(237,450)(238,449)(239,451)(240,452)
(241,461)(242,462)(243,464)(244,463)(245,458)(246,457)(247,459)(248,460)
(249,469)(250,470)(251,472)(252,471)(253,466)(254,465)(255,467)(256,468)
(257,477)(258,478)(259,480)(260,479)(261,474)(262,473)(263,475)(264,476)
(265,485)(266,486)(267,488)(268,487)(269,482)(270,481)(271,483)(272,484)
(273,493)(274,494)(275,496)(276,495)(277,490)(278,489)(279,491)(280,492)
(281,501)(282,502)(283,504)(284,503)(285,498)(286,497)(287,499)(288,500);;
s1 := (  1,145)(  2,146)(  3,148)(  4,147)(  5,151)(  6,152)(  7,149)(  8,150)
(  9,161)( 10,162)( 11,164)( 12,163)( 13,167)( 14,168)( 15,165)( 16,166)
( 17,153)( 18,154)( 19,156)( 20,155)( 21,159)( 22,160)( 23,157)( 24,158)
( 25,209)( 26,210)( 27,212)( 28,211)( 29,215)( 30,216)( 31,213)( 32,214)
( 33,201)( 34,202)( 35,204)( 36,203)( 37,207)( 38,208)( 39,205)( 40,206)
( 41,193)( 42,194)( 43,196)( 44,195)( 45,199)( 46,200)( 47,197)( 48,198)
( 49,185)( 50,186)( 51,188)( 52,187)( 53,191)( 54,192)( 55,189)( 56,190)
( 57,177)( 58,178)( 59,180)( 60,179)( 61,183)( 62,184)( 63,181)( 64,182)
( 65,169)( 66,170)( 67,172)( 68,171)( 69,175)( 70,176)( 71,173)( 72,174)
( 73,217)( 74,218)( 75,220)( 76,219)( 77,223)( 78,224)( 79,221)( 80,222)
( 81,233)( 82,234)( 83,236)( 84,235)( 85,239)( 86,240)( 87,237)( 88,238)
( 89,225)( 90,226)( 91,228)( 92,227)( 93,231)( 94,232)( 95,229)( 96,230)
( 97,281)( 98,282)( 99,284)(100,283)(101,287)(102,288)(103,285)(104,286)
(105,273)(106,274)(107,276)(108,275)(109,279)(110,280)(111,277)(112,278)
(113,265)(114,266)(115,268)(116,267)(117,271)(118,272)(119,269)(120,270)
(121,257)(122,258)(123,260)(124,259)(125,263)(126,264)(127,261)(128,262)
(129,249)(130,250)(131,252)(132,251)(133,255)(134,256)(135,253)(136,254)
(137,241)(138,242)(139,244)(140,243)(141,247)(142,248)(143,245)(144,246)
(289,434)(290,433)(291,435)(292,436)(293,440)(294,439)(295,438)(296,437)
(297,450)(298,449)(299,451)(300,452)(301,456)(302,455)(303,454)(304,453)
(305,442)(306,441)(307,443)(308,444)(309,448)(310,447)(311,446)(312,445)
(313,498)(314,497)(315,499)(316,500)(317,504)(318,503)(319,502)(320,501)
(321,490)(322,489)(323,491)(324,492)(325,496)(326,495)(327,494)(328,493)
(329,482)(330,481)(331,483)(332,484)(333,488)(334,487)(335,486)(336,485)
(337,474)(338,473)(339,475)(340,476)(341,480)(342,479)(343,478)(344,477)
(345,466)(346,465)(347,467)(348,468)(349,472)(350,471)(351,470)(352,469)
(353,458)(354,457)(355,459)(356,460)(357,464)(358,463)(359,462)(360,461)
(361,506)(362,505)(363,507)(364,508)(365,512)(366,511)(367,510)(368,509)
(369,522)(370,521)(371,523)(372,524)(373,528)(374,527)(375,526)(376,525)
(377,514)(378,513)(379,515)(380,516)(381,520)(382,519)(383,518)(384,517)
(385,570)(386,569)(387,571)(388,572)(389,576)(390,575)(391,574)(392,573)
(393,562)(394,561)(395,563)(396,564)(397,568)(398,567)(399,566)(400,565)
(401,554)(402,553)(403,555)(404,556)(405,560)(406,559)(407,558)(408,557)
(409,546)(410,545)(411,547)(412,548)(413,552)(414,551)(415,550)(416,549)
(417,538)(418,537)(419,539)(420,540)(421,544)(422,543)(423,542)(424,541)
(425,530)(426,529)(427,531)(428,532)(429,536)(430,535)(431,534)(432,533);;
s2 := (  1,313)(  2,314)(  3,319)(  4,320)(  5,318)(  6,317)(  7,315)(  8,316)
(  9,329)( 10,330)( 11,335)( 12,336)( 13,334)( 14,333)( 15,331)( 16,332)
( 17,321)( 18,322)( 19,327)( 20,328)( 21,326)( 22,325)( 23,323)( 24,324)
( 25,289)( 26,290)( 27,295)( 28,296)( 29,294)( 30,293)( 31,291)( 32,292)
( 33,305)( 34,306)( 35,311)( 36,312)( 37,310)( 38,309)( 39,307)( 40,308)
( 41,297)( 42,298)( 43,303)( 44,304)( 45,302)( 46,301)( 47,299)( 48,300)
( 49,353)( 50,354)( 51,359)( 52,360)( 53,358)( 54,357)( 55,355)( 56,356)
( 57,345)( 58,346)( 59,351)( 60,352)( 61,350)( 62,349)( 63,347)( 64,348)
( 65,337)( 66,338)( 67,343)( 68,344)( 69,342)( 70,341)( 71,339)( 72,340)
( 73,385)( 74,386)( 75,391)( 76,392)( 77,390)( 78,389)( 79,387)( 80,388)
( 81,401)( 82,402)( 83,407)( 84,408)( 85,406)( 86,405)( 87,403)( 88,404)
( 89,393)( 90,394)( 91,399)( 92,400)( 93,398)( 94,397)( 95,395)( 96,396)
( 97,361)( 98,362)( 99,367)(100,368)(101,366)(102,365)(103,363)(104,364)
(105,377)(106,378)(107,383)(108,384)(109,382)(110,381)(111,379)(112,380)
(113,369)(114,370)(115,375)(116,376)(117,374)(118,373)(119,371)(120,372)
(121,425)(122,426)(123,431)(124,432)(125,430)(126,429)(127,427)(128,428)
(129,417)(130,418)(131,423)(132,424)(133,422)(134,421)(135,419)(136,420)
(137,409)(138,410)(139,415)(140,416)(141,414)(142,413)(143,411)(144,412)
(145,530)(146,529)(147,536)(148,535)(149,533)(150,534)(151,532)(152,531)
(153,546)(154,545)(155,552)(156,551)(157,549)(158,550)(159,548)(160,547)
(161,538)(162,537)(163,544)(164,543)(165,541)(166,542)(167,540)(168,539)
(169,506)(170,505)(171,512)(172,511)(173,509)(174,510)(175,508)(176,507)
(177,522)(178,521)(179,528)(180,527)(181,525)(182,526)(183,524)(184,523)
(185,514)(186,513)(187,520)(188,519)(189,517)(190,518)(191,516)(192,515)
(193,570)(194,569)(195,576)(196,575)(197,573)(198,574)(199,572)(200,571)
(201,562)(202,561)(203,568)(204,567)(205,565)(206,566)(207,564)(208,563)
(209,554)(210,553)(211,560)(212,559)(213,557)(214,558)(215,556)(216,555)
(217,458)(218,457)(219,464)(220,463)(221,461)(222,462)(223,460)(224,459)
(225,474)(226,473)(227,480)(228,479)(229,477)(230,478)(231,476)(232,475)
(233,466)(234,465)(235,472)(236,471)(237,469)(238,470)(239,468)(240,467)
(241,434)(242,433)(243,440)(244,439)(245,437)(246,438)(247,436)(248,435)
(249,450)(250,449)(251,456)(252,455)(253,453)(254,454)(255,452)(256,451)
(257,442)(258,441)(259,448)(260,447)(261,445)(262,446)(263,444)(264,443)
(265,498)(266,497)(267,504)(268,503)(269,501)(270,502)(271,500)(272,499)
(273,490)(274,489)(275,496)(276,495)(277,493)(278,494)(279,492)(280,491)
(281,482)(282,481)(283,488)(284,487)(285,485)(286,486)(287,484)(288,483);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,293)(  2,294)(  3,296)(  4,295)(  5,290)(  6,289)(  7,291)
(  8,292)(  9,301)( 10,302)( 11,304)( 12,303)( 13,298)( 14,297)( 15,299)
( 16,300)( 17,309)( 18,310)( 19,312)( 20,311)( 21,306)( 22,305)( 23,307)
( 24,308)( 25,317)( 26,318)( 27,320)( 28,319)( 29,314)( 30,313)( 31,315)
( 32,316)( 33,325)( 34,326)( 35,328)( 36,327)( 37,322)( 38,321)( 39,323)
( 40,324)( 41,333)( 42,334)( 43,336)( 44,335)( 45,330)( 46,329)( 47,331)
( 48,332)( 49,341)( 50,342)( 51,344)( 52,343)( 53,338)( 54,337)( 55,339)
( 56,340)( 57,349)( 58,350)( 59,352)( 60,351)( 61,346)( 62,345)( 63,347)
( 64,348)( 65,357)( 66,358)( 67,360)( 68,359)( 69,354)( 70,353)( 71,355)
( 72,356)( 73,365)( 74,366)( 75,368)( 76,367)( 77,362)( 78,361)( 79,363)
( 80,364)( 81,373)( 82,374)( 83,376)( 84,375)( 85,370)( 86,369)( 87,371)
( 88,372)( 89,381)( 90,382)( 91,384)( 92,383)( 93,378)( 94,377)( 95,379)
( 96,380)( 97,389)( 98,390)( 99,392)(100,391)(101,386)(102,385)(103,387)
(104,388)(105,397)(106,398)(107,400)(108,399)(109,394)(110,393)(111,395)
(112,396)(113,405)(114,406)(115,408)(116,407)(117,402)(118,401)(119,403)
(120,404)(121,413)(122,414)(123,416)(124,415)(125,410)(126,409)(127,411)
(128,412)(129,421)(130,422)(131,424)(132,423)(133,418)(134,417)(135,419)
(136,420)(137,429)(138,430)(139,432)(140,431)(141,426)(142,425)(143,427)
(144,428)(145,509)(146,510)(147,512)(148,511)(149,506)(150,505)(151,507)
(152,508)(153,517)(154,518)(155,520)(156,519)(157,514)(158,513)(159,515)
(160,516)(161,525)(162,526)(163,528)(164,527)(165,522)(166,521)(167,523)
(168,524)(169,533)(170,534)(171,536)(172,535)(173,530)(174,529)(175,531)
(176,532)(177,541)(178,542)(179,544)(180,543)(181,538)(182,537)(183,539)
(184,540)(185,549)(186,550)(187,552)(188,551)(189,546)(190,545)(191,547)
(192,548)(193,557)(194,558)(195,560)(196,559)(197,554)(198,553)(199,555)
(200,556)(201,565)(202,566)(203,568)(204,567)(205,562)(206,561)(207,563)
(208,564)(209,573)(210,574)(211,576)(212,575)(213,570)(214,569)(215,571)
(216,572)(217,437)(218,438)(219,440)(220,439)(221,434)(222,433)(223,435)
(224,436)(225,445)(226,446)(227,448)(228,447)(229,442)(230,441)(231,443)
(232,444)(233,453)(234,454)(235,456)(236,455)(237,450)(238,449)(239,451)
(240,452)(241,461)(242,462)(243,464)(244,463)(245,458)(246,457)(247,459)
(248,460)(249,469)(250,470)(251,472)(252,471)(253,466)(254,465)(255,467)
(256,468)(257,477)(258,478)(259,480)(260,479)(261,474)(262,473)(263,475)
(264,476)(265,485)(266,486)(267,488)(268,487)(269,482)(270,481)(271,483)
(272,484)(273,493)(274,494)(275,496)(276,495)(277,490)(278,489)(279,491)
(280,492)(281,501)(282,502)(283,504)(284,503)(285,498)(286,497)(287,499)
(288,500);
s1 := Sym(576)!(  1,145)(  2,146)(  3,148)(  4,147)(  5,151)(  6,152)(  7,149)
(  8,150)(  9,161)( 10,162)( 11,164)( 12,163)( 13,167)( 14,168)( 15,165)
( 16,166)( 17,153)( 18,154)( 19,156)( 20,155)( 21,159)( 22,160)( 23,157)
( 24,158)( 25,209)( 26,210)( 27,212)( 28,211)( 29,215)( 30,216)( 31,213)
( 32,214)( 33,201)( 34,202)( 35,204)( 36,203)( 37,207)( 38,208)( 39,205)
( 40,206)( 41,193)( 42,194)( 43,196)( 44,195)( 45,199)( 46,200)( 47,197)
( 48,198)( 49,185)( 50,186)( 51,188)( 52,187)( 53,191)( 54,192)( 55,189)
( 56,190)( 57,177)( 58,178)( 59,180)( 60,179)( 61,183)( 62,184)( 63,181)
( 64,182)( 65,169)( 66,170)( 67,172)( 68,171)( 69,175)( 70,176)( 71,173)
( 72,174)( 73,217)( 74,218)( 75,220)( 76,219)( 77,223)( 78,224)( 79,221)
( 80,222)( 81,233)( 82,234)( 83,236)( 84,235)( 85,239)( 86,240)( 87,237)
( 88,238)( 89,225)( 90,226)( 91,228)( 92,227)( 93,231)( 94,232)( 95,229)
( 96,230)( 97,281)( 98,282)( 99,284)(100,283)(101,287)(102,288)(103,285)
(104,286)(105,273)(106,274)(107,276)(108,275)(109,279)(110,280)(111,277)
(112,278)(113,265)(114,266)(115,268)(116,267)(117,271)(118,272)(119,269)
(120,270)(121,257)(122,258)(123,260)(124,259)(125,263)(126,264)(127,261)
(128,262)(129,249)(130,250)(131,252)(132,251)(133,255)(134,256)(135,253)
(136,254)(137,241)(138,242)(139,244)(140,243)(141,247)(142,248)(143,245)
(144,246)(289,434)(290,433)(291,435)(292,436)(293,440)(294,439)(295,438)
(296,437)(297,450)(298,449)(299,451)(300,452)(301,456)(302,455)(303,454)
(304,453)(305,442)(306,441)(307,443)(308,444)(309,448)(310,447)(311,446)
(312,445)(313,498)(314,497)(315,499)(316,500)(317,504)(318,503)(319,502)
(320,501)(321,490)(322,489)(323,491)(324,492)(325,496)(326,495)(327,494)
(328,493)(329,482)(330,481)(331,483)(332,484)(333,488)(334,487)(335,486)
(336,485)(337,474)(338,473)(339,475)(340,476)(341,480)(342,479)(343,478)
(344,477)(345,466)(346,465)(347,467)(348,468)(349,472)(350,471)(351,470)
(352,469)(353,458)(354,457)(355,459)(356,460)(357,464)(358,463)(359,462)
(360,461)(361,506)(362,505)(363,507)(364,508)(365,512)(366,511)(367,510)
(368,509)(369,522)(370,521)(371,523)(372,524)(373,528)(374,527)(375,526)
(376,525)(377,514)(378,513)(379,515)(380,516)(381,520)(382,519)(383,518)
(384,517)(385,570)(386,569)(387,571)(388,572)(389,576)(390,575)(391,574)
(392,573)(393,562)(394,561)(395,563)(396,564)(397,568)(398,567)(399,566)
(400,565)(401,554)(402,553)(403,555)(404,556)(405,560)(406,559)(407,558)
(408,557)(409,546)(410,545)(411,547)(412,548)(413,552)(414,551)(415,550)
(416,549)(417,538)(418,537)(419,539)(420,540)(421,544)(422,543)(423,542)
(424,541)(425,530)(426,529)(427,531)(428,532)(429,536)(430,535)(431,534)
(432,533);
s2 := Sym(576)!(  1,313)(  2,314)(  3,319)(  4,320)(  5,318)(  6,317)(  7,315)
(  8,316)(  9,329)( 10,330)( 11,335)( 12,336)( 13,334)( 14,333)( 15,331)
( 16,332)( 17,321)( 18,322)( 19,327)( 20,328)( 21,326)( 22,325)( 23,323)
( 24,324)( 25,289)( 26,290)( 27,295)( 28,296)( 29,294)( 30,293)( 31,291)
( 32,292)( 33,305)( 34,306)( 35,311)( 36,312)( 37,310)( 38,309)( 39,307)
( 40,308)( 41,297)( 42,298)( 43,303)( 44,304)( 45,302)( 46,301)( 47,299)
( 48,300)( 49,353)( 50,354)( 51,359)( 52,360)( 53,358)( 54,357)( 55,355)
( 56,356)( 57,345)( 58,346)( 59,351)( 60,352)( 61,350)( 62,349)( 63,347)
( 64,348)( 65,337)( 66,338)( 67,343)( 68,344)( 69,342)( 70,341)( 71,339)
( 72,340)( 73,385)( 74,386)( 75,391)( 76,392)( 77,390)( 78,389)( 79,387)
( 80,388)( 81,401)( 82,402)( 83,407)( 84,408)( 85,406)( 86,405)( 87,403)
( 88,404)( 89,393)( 90,394)( 91,399)( 92,400)( 93,398)( 94,397)( 95,395)
( 96,396)( 97,361)( 98,362)( 99,367)(100,368)(101,366)(102,365)(103,363)
(104,364)(105,377)(106,378)(107,383)(108,384)(109,382)(110,381)(111,379)
(112,380)(113,369)(114,370)(115,375)(116,376)(117,374)(118,373)(119,371)
(120,372)(121,425)(122,426)(123,431)(124,432)(125,430)(126,429)(127,427)
(128,428)(129,417)(130,418)(131,423)(132,424)(133,422)(134,421)(135,419)
(136,420)(137,409)(138,410)(139,415)(140,416)(141,414)(142,413)(143,411)
(144,412)(145,530)(146,529)(147,536)(148,535)(149,533)(150,534)(151,532)
(152,531)(153,546)(154,545)(155,552)(156,551)(157,549)(158,550)(159,548)
(160,547)(161,538)(162,537)(163,544)(164,543)(165,541)(166,542)(167,540)
(168,539)(169,506)(170,505)(171,512)(172,511)(173,509)(174,510)(175,508)
(176,507)(177,522)(178,521)(179,528)(180,527)(181,525)(182,526)(183,524)
(184,523)(185,514)(186,513)(187,520)(188,519)(189,517)(190,518)(191,516)
(192,515)(193,570)(194,569)(195,576)(196,575)(197,573)(198,574)(199,572)
(200,571)(201,562)(202,561)(203,568)(204,567)(205,565)(206,566)(207,564)
(208,563)(209,554)(210,553)(211,560)(212,559)(213,557)(214,558)(215,556)
(216,555)(217,458)(218,457)(219,464)(220,463)(221,461)(222,462)(223,460)
(224,459)(225,474)(226,473)(227,480)(228,479)(229,477)(230,478)(231,476)
(232,475)(233,466)(234,465)(235,472)(236,471)(237,469)(238,470)(239,468)
(240,467)(241,434)(242,433)(243,440)(244,439)(245,437)(246,438)(247,436)
(248,435)(249,450)(250,449)(251,456)(252,455)(253,453)(254,454)(255,452)
(256,451)(257,442)(258,441)(259,448)(260,447)(261,445)(262,446)(263,444)
(264,443)(265,498)(266,497)(267,504)(268,503)(269,501)(270,502)(271,500)
(272,499)(273,490)(274,489)(275,496)(276,495)(277,493)(278,494)(279,492)
(280,491)(281,482)(282,481)(283,488)(284,487)(285,485)(286,486)(287,484)
(288,483);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope