Polytope of Type {36,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,8}*1152h
if this polytope has a name.
Group : SmallGroup(1152,154321)
Rank : 3
Schlafli Type : {36,8}
Number of vertices, edges, etc : 72, 288, 16
Order of s0s1s2 : 36
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {36,4}*576c, {18,8}*576b
   3-fold quotients : {12,8}*384h
   4-fold quotients : {9,8}*288, {18,4}*288
   6-fold quotients : {12,4}*192c, {6,8}*192b
   8-fold quotients : {9,4}*144, {18,4}*144b, {18,4}*144c
   12-fold quotients : {3,8}*96, {6,4}*96
   16-fold quotients : {9,4}*72, {18,2}*72
   24-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
   32-fold quotients : {9,2}*36
   48-fold quotients : {3,4}*24, {6,2}*24
   96-fold quotients : {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,289)(  2,290)(  3,292)(  4,291)(  5,295)(  6,296)(  7,293)(  8,294)
(  9,305)( 10,306)( 11,308)( 12,307)( 13,311)( 14,312)( 15,309)( 16,310)
( 17,297)( 18,298)( 19,300)( 20,299)( 21,303)( 22,304)( 23,301)( 24,302)
( 25,353)( 26,354)( 27,356)( 28,355)( 29,359)( 30,360)( 31,357)( 32,358)
( 33,345)( 34,346)( 35,348)( 36,347)( 37,351)( 38,352)( 39,349)( 40,350)
( 41,337)( 42,338)( 43,340)( 44,339)( 45,343)( 46,344)( 47,341)( 48,342)
( 49,329)( 50,330)( 51,332)( 52,331)( 53,335)( 54,336)( 55,333)( 56,334)
( 57,321)( 58,322)( 59,324)( 60,323)( 61,327)( 62,328)( 63,325)( 64,326)
( 65,313)( 66,314)( 67,316)( 68,315)( 69,319)( 70,320)( 71,317)( 72,318)
( 73,361)( 74,362)( 75,364)( 76,363)( 77,367)( 78,368)( 79,365)( 80,366)
( 81,377)( 82,378)( 83,380)( 84,379)( 85,383)( 86,384)( 87,381)( 88,382)
( 89,369)( 90,370)( 91,372)( 92,371)( 93,375)( 94,376)( 95,373)( 96,374)
( 97,425)( 98,426)( 99,428)(100,427)(101,431)(102,432)(103,429)(104,430)
(105,417)(106,418)(107,420)(108,419)(109,423)(110,424)(111,421)(112,422)
(113,409)(114,410)(115,412)(116,411)(117,415)(118,416)(119,413)(120,414)
(121,401)(122,402)(123,404)(124,403)(125,407)(126,408)(127,405)(128,406)
(129,393)(130,394)(131,396)(132,395)(133,399)(134,400)(135,397)(136,398)
(137,385)(138,386)(139,388)(140,387)(141,391)(142,392)(143,389)(144,390)
(145,506)(146,505)(147,507)(148,508)(149,512)(150,511)(151,510)(152,509)
(153,522)(154,521)(155,523)(156,524)(157,528)(158,527)(159,526)(160,525)
(161,514)(162,513)(163,515)(164,516)(165,520)(166,519)(167,518)(168,517)
(169,570)(170,569)(171,571)(172,572)(173,576)(174,575)(175,574)(176,573)
(177,562)(178,561)(179,563)(180,564)(181,568)(182,567)(183,566)(184,565)
(185,554)(186,553)(187,555)(188,556)(189,560)(190,559)(191,558)(192,557)
(193,546)(194,545)(195,547)(196,548)(197,552)(198,551)(199,550)(200,549)
(201,538)(202,537)(203,539)(204,540)(205,544)(206,543)(207,542)(208,541)
(209,530)(210,529)(211,531)(212,532)(213,536)(214,535)(215,534)(216,533)
(217,434)(218,433)(219,435)(220,436)(221,440)(222,439)(223,438)(224,437)
(225,450)(226,449)(227,451)(228,452)(229,456)(230,455)(231,454)(232,453)
(233,442)(234,441)(235,443)(236,444)(237,448)(238,447)(239,446)(240,445)
(241,498)(242,497)(243,499)(244,500)(245,504)(246,503)(247,502)(248,501)
(249,490)(250,489)(251,491)(252,492)(253,496)(254,495)(255,494)(256,493)
(257,482)(258,481)(259,483)(260,484)(261,488)(262,487)(263,486)(264,485)
(265,474)(266,473)(267,475)(268,476)(269,480)(270,479)(271,478)(272,477)
(273,466)(274,465)(275,467)(276,468)(277,472)(278,471)(279,470)(280,469)
(281,458)(282,457)(283,459)(284,460)(285,464)(286,463)(287,462)(288,461);;
s1 := (  1,169)(  2,170)(  3,175)(  4,176)(  5,174)(  6,173)(  7,171)(  8,172)
(  9,185)( 10,186)( 11,191)( 12,192)( 13,190)( 14,189)( 15,187)( 16,188)
( 17,177)( 18,178)( 19,183)( 20,184)( 21,182)( 22,181)( 23,179)( 24,180)
( 25,145)( 26,146)( 27,151)( 28,152)( 29,150)( 30,149)( 31,147)( 32,148)
( 33,161)( 34,162)( 35,167)( 36,168)( 37,166)( 38,165)( 39,163)( 40,164)
( 41,153)( 42,154)( 43,159)( 44,160)( 45,158)( 46,157)( 47,155)( 48,156)
( 49,209)( 50,210)( 51,215)( 52,216)( 53,214)( 54,213)( 55,211)( 56,212)
( 57,201)( 58,202)( 59,207)( 60,208)( 61,206)( 62,205)( 63,203)( 64,204)
( 65,193)( 66,194)( 67,199)( 68,200)( 69,198)( 70,197)( 71,195)( 72,196)
( 73,241)( 74,242)( 75,247)( 76,248)( 77,246)( 78,245)( 79,243)( 80,244)
( 81,257)( 82,258)( 83,263)( 84,264)( 85,262)( 86,261)( 87,259)( 88,260)
( 89,249)( 90,250)( 91,255)( 92,256)( 93,254)( 94,253)( 95,251)( 96,252)
( 97,217)( 98,218)( 99,223)(100,224)(101,222)(102,221)(103,219)(104,220)
(105,233)(106,234)(107,239)(108,240)(109,238)(110,237)(111,235)(112,236)
(113,225)(114,226)(115,231)(116,232)(117,230)(118,229)(119,227)(120,228)
(121,281)(122,282)(123,287)(124,288)(125,286)(126,285)(127,283)(128,284)
(129,273)(130,274)(131,279)(132,280)(133,278)(134,277)(135,275)(136,276)
(137,265)(138,266)(139,271)(140,272)(141,270)(142,269)(143,267)(144,268)
(289,458)(290,457)(291,464)(292,463)(293,461)(294,462)(295,460)(296,459)
(297,474)(298,473)(299,480)(300,479)(301,477)(302,478)(303,476)(304,475)
(305,466)(306,465)(307,472)(308,471)(309,469)(310,470)(311,468)(312,467)
(313,434)(314,433)(315,440)(316,439)(317,437)(318,438)(319,436)(320,435)
(321,450)(322,449)(323,456)(324,455)(325,453)(326,454)(327,452)(328,451)
(329,442)(330,441)(331,448)(332,447)(333,445)(334,446)(335,444)(336,443)
(337,498)(338,497)(339,504)(340,503)(341,501)(342,502)(343,500)(344,499)
(345,490)(346,489)(347,496)(348,495)(349,493)(350,494)(351,492)(352,491)
(353,482)(354,481)(355,488)(356,487)(357,485)(358,486)(359,484)(360,483)
(361,530)(362,529)(363,536)(364,535)(365,533)(366,534)(367,532)(368,531)
(369,546)(370,545)(371,552)(372,551)(373,549)(374,550)(375,548)(376,547)
(377,538)(378,537)(379,544)(380,543)(381,541)(382,542)(383,540)(384,539)
(385,506)(386,505)(387,512)(388,511)(389,509)(390,510)(391,508)(392,507)
(393,522)(394,521)(395,528)(396,527)(397,525)(398,526)(399,524)(400,523)
(401,514)(402,513)(403,520)(404,519)(405,517)(406,518)(407,516)(408,515)
(409,570)(410,569)(411,576)(412,575)(413,573)(414,574)(415,572)(416,571)
(417,562)(418,561)(419,568)(420,567)(421,565)(422,566)(423,564)(424,563)
(425,554)(426,553)(427,560)(428,559)(429,557)(430,558)(431,556)(432,555);;
s2 := (  1,291)(  2,292)(  3,290)(  4,289)(  5,295)(  6,296)(  7,294)(  8,293)
(  9,299)( 10,300)( 11,298)( 12,297)( 13,303)( 14,304)( 15,302)( 16,301)
( 17,307)( 18,308)( 19,306)( 20,305)( 21,311)( 22,312)( 23,310)( 24,309)
( 25,315)( 26,316)( 27,314)( 28,313)( 29,319)( 30,320)( 31,318)( 32,317)
( 33,323)( 34,324)( 35,322)( 36,321)( 37,327)( 38,328)( 39,326)( 40,325)
( 41,331)( 42,332)( 43,330)( 44,329)( 45,335)( 46,336)( 47,334)( 48,333)
( 49,339)( 50,340)( 51,338)( 52,337)( 53,343)( 54,344)( 55,342)( 56,341)
( 57,347)( 58,348)( 59,346)( 60,345)( 61,351)( 62,352)( 63,350)( 64,349)
( 65,355)( 66,356)( 67,354)( 68,353)( 69,359)( 70,360)( 71,358)( 72,357)
( 73,363)( 74,364)( 75,362)( 76,361)( 77,367)( 78,368)( 79,366)( 80,365)
( 81,371)( 82,372)( 83,370)( 84,369)( 85,375)( 86,376)( 87,374)( 88,373)
( 89,379)( 90,380)( 91,378)( 92,377)( 93,383)( 94,384)( 95,382)( 96,381)
( 97,387)( 98,388)( 99,386)(100,385)(101,391)(102,392)(103,390)(104,389)
(105,395)(106,396)(107,394)(108,393)(109,399)(110,400)(111,398)(112,397)
(113,403)(114,404)(115,402)(116,401)(117,407)(118,408)(119,406)(120,405)
(121,411)(122,412)(123,410)(124,409)(125,415)(126,416)(127,414)(128,413)
(129,419)(130,420)(131,418)(132,417)(133,423)(134,424)(135,422)(136,421)
(137,427)(138,428)(139,426)(140,425)(141,431)(142,432)(143,430)(144,429)
(145,507)(146,508)(147,506)(148,505)(149,511)(150,512)(151,510)(152,509)
(153,515)(154,516)(155,514)(156,513)(157,519)(158,520)(159,518)(160,517)
(161,523)(162,524)(163,522)(164,521)(165,527)(166,528)(167,526)(168,525)
(169,531)(170,532)(171,530)(172,529)(173,535)(174,536)(175,534)(176,533)
(177,539)(178,540)(179,538)(180,537)(181,543)(182,544)(183,542)(184,541)
(185,547)(186,548)(187,546)(188,545)(189,551)(190,552)(191,550)(192,549)
(193,555)(194,556)(195,554)(196,553)(197,559)(198,560)(199,558)(200,557)
(201,563)(202,564)(203,562)(204,561)(205,567)(206,568)(207,566)(208,565)
(209,571)(210,572)(211,570)(212,569)(213,575)(214,576)(215,574)(216,573)
(217,435)(218,436)(219,434)(220,433)(221,439)(222,440)(223,438)(224,437)
(225,443)(226,444)(227,442)(228,441)(229,447)(230,448)(231,446)(232,445)
(233,451)(234,452)(235,450)(236,449)(237,455)(238,456)(239,454)(240,453)
(241,459)(242,460)(243,458)(244,457)(245,463)(246,464)(247,462)(248,461)
(249,467)(250,468)(251,466)(252,465)(253,471)(254,472)(255,470)(256,469)
(257,475)(258,476)(259,474)(260,473)(261,479)(262,480)(263,478)(264,477)
(265,483)(266,484)(267,482)(268,481)(269,487)(270,488)(271,486)(272,485)
(273,491)(274,492)(275,490)(276,489)(277,495)(278,496)(279,494)(280,493)
(281,499)(282,500)(283,498)(284,497)(285,503)(286,504)(287,502)(288,501);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,289)(  2,290)(  3,292)(  4,291)(  5,295)(  6,296)(  7,293)
(  8,294)(  9,305)( 10,306)( 11,308)( 12,307)( 13,311)( 14,312)( 15,309)
( 16,310)( 17,297)( 18,298)( 19,300)( 20,299)( 21,303)( 22,304)( 23,301)
( 24,302)( 25,353)( 26,354)( 27,356)( 28,355)( 29,359)( 30,360)( 31,357)
( 32,358)( 33,345)( 34,346)( 35,348)( 36,347)( 37,351)( 38,352)( 39,349)
( 40,350)( 41,337)( 42,338)( 43,340)( 44,339)( 45,343)( 46,344)( 47,341)
( 48,342)( 49,329)( 50,330)( 51,332)( 52,331)( 53,335)( 54,336)( 55,333)
( 56,334)( 57,321)( 58,322)( 59,324)( 60,323)( 61,327)( 62,328)( 63,325)
( 64,326)( 65,313)( 66,314)( 67,316)( 68,315)( 69,319)( 70,320)( 71,317)
( 72,318)( 73,361)( 74,362)( 75,364)( 76,363)( 77,367)( 78,368)( 79,365)
( 80,366)( 81,377)( 82,378)( 83,380)( 84,379)( 85,383)( 86,384)( 87,381)
( 88,382)( 89,369)( 90,370)( 91,372)( 92,371)( 93,375)( 94,376)( 95,373)
( 96,374)( 97,425)( 98,426)( 99,428)(100,427)(101,431)(102,432)(103,429)
(104,430)(105,417)(106,418)(107,420)(108,419)(109,423)(110,424)(111,421)
(112,422)(113,409)(114,410)(115,412)(116,411)(117,415)(118,416)(119,413)
(120,414)(121,401)(122,402)(123,404)(124,403)(125,407)(126,408)(127,405)
(128,406)(129,393)(130,394)(131,396)(132,395)(133,399)(134,400)(135,397)
(136,398)(137,385)(138,386)(139,388)(140,387)(141,391)(142,392)(143,389)
(144,390)(145,506)(146,505)(147,507)(148,508)(149,512)(150,511)(151,510)
(152,509)(153,522)(154,521)(155,523)(156,524)(157,528)(158,527)(159,526)
(160,525)(161,514)(162,513)(163,515)(164,516)(165,520)(166,519)(167,518)
(168,517)(169,570)(170,569)(171,571)(172,572)(173,576)(174,575)(175,574)
(176,573)(177,562)(178,561)(179,563)(180,564)(181,568)(182,567)(183,566)
(184,565)(185,554)(186,553)(187,555)(188,556)(189,560)(190,559)(191,558)
(192,557)(193,546)(194,545)(195,547)(196,548)(197,552)(198,551)(199,550)
(200,549)(201,538)(202,537)(203,539)(204,540)(205,544)(206,543)(207,542)
(208,541)(209,530)(210,529)(211,531)(212,532)(213,536)(214,535)(215,534)
(216,533)(217,434)(218,433)(219,435)(220,436)(221,440)(222,439)(223,438)
(224,437)(225,450)(226,449)(227,451)(228,452)(229,456)(230,455)(231,454)
(232,453)(233,442)(234,441)(235,443)(236,444)(237,448)(238,447)(239,446)
(240,445)(241,498)(242,497)(243,499)(244,500)(245,504)(246,503)(247,502)
(248,501)(249,490)(250,489)(251,491)(252,492)(253,496)(254,495)(255,494)
(256,493)(257,482)(258,481)(259,483)(260,484)(261,488)(262,487)(263,486)
(264,485)(265,474)(266,473)(267,475)(268,476)(269,480)(270,479)(271,478)
(272,477)(273,466)(274,465)(275,467)(276,468)(277,472)(278,471)(279,470)
(280,469)(281,458)(282,457)(283,459)(284,460)(285,464)(286,463)(287,462)
(288,461);
s1 := Sym(576)!(  1,169)(  2,170)(  3,175)(  4,176)(  5,174)(  6,173)(  7,171)
(  8,172)(  9,185)( 10,186)( 11,191)( 12,192)( 13,190)( 14,189)( 15,187)
( 16,188)( 17,177)( 18,178)( 19,183)( 20,184)( 21,182)( 22,181)( 23,179)
( 24,180)( 25,145)( 26,146)( 27,151)( 28,152)( 29,150)( 30,149)( 31,147)
( 32,148)( 33,161)( 34,162)( 35,167)( 36,168)( 37,166)( 38,165)( 39,163)
( 40,164)( 41,153)( 42,154)( 43,159)( 44,160)( 45,158)( 46,157)( 47,155)
( 48,156)( 49,209)( 50,210)( 51,215)( 52,216)( 53,214)( 54,213)( 55,211)
( 56,212)( 57,201)( 58,202)( 59,207)( 60,208)( 61,206)( 62,205)( 63,203)
( 64,204)( 65,193)( 66,194)( 67,199)( 68,200)( 69,198)( 70,197)( 71,195)
( 72,196)( 73,241)( 74,242)( 75,247)( 76,248)( 77,246)( 78,245)( 79,243)
( 80,244)( 81,257)( 82,258)( 83,263)( 84,264)( 85,262)( 86,261)( 87,259)
( 88,260)( 89,249)( 90,250)( 91,255)( 92,256)( 93,254)( 94,253)( 95,251)
( 96,252)( 97,217)( 98,218)( 99,223)(100,224)(101,222)(102,221)(103,219)
(104,220)(105,233)(106,234)(107,239)(108,240)(109,238)(110,237)(111,235)
(112,236)(113,225)(114,226)(115,231)(116,232)(117,230)(118,229)(119,227)
(120,228)(121,281)(122,282)(123,287)(124,288)(125,286)(126,285)(127,283)
(128,284)(129,273)(130,274)(131,279)(132,280)(133,278)(134,277)(135,275)
(136,276)(137,265)(138,266)(139,271)(140,272)(141,270)(142,269)(143,267)
(144,268)(289,458)(290,457)(291,464)(292,463)(293,461)(294,462)(295,460)
(296,459)(297,474)(298,473)(299,480)(300,479)(301,477)(302,478)(303,476)
(304,475)(305,466)(306,465)(307,472)(308,471)(309,469)(310,470)(311,468)
(312,467)(313,434)(314,433)(315,440)(316,439)(317,437)(318,438)(319,436)
(320,435)(321,450)(322,449)(323,456)(324,455)(325,453)(326,454)(327,452)
(328,451)(329,442)(330,441)(331,448)(332,447)(333,445)(334,446)(335,444)
(336,443)(337,498)(338,497)(339,504)(340,503)(341,501)(342,502)(343,500)
(344,499)(345,490)(346,489)(347,496)(348,495)(349,493)(350,494)(351,492)
(352,491)(353,482)(354,481)(355,488)(356,487)(357,485)(358,486)(359,484)
(360,483)(361,530)(362,529)(363,536)(364,535)(365,533)(366,534)(367,532)
(368,531)(369,546)(370,545)(371,552)(372,551)(373,549)(374,550)(375,548)
(376,547)(377,538)(378,537)(379,544)(380,543)(381,541)(382,542)(383,540)
(384,539)(385,506)(386,505)(387,512)(388,511)(389,509)(390,510)(391,508)
(392,507)(393,522)(394,521)(395,528)(396,527)(397,525)(398,526)(399,524)
(400,523)(401,514)(402,513)(403,520)(404,519)(405,517)(406,518)(407,516)
(408,515)(409,570)(410,569)(411,576)(412,575)(413,573)(414,574)(415,572)
(416,571)(417,562)(418,561)(419,568)(420,567)(421,565)(422,566)(423,564)
(424,563)(425,554)(426,553)(427,560)(428,559)(429,557)(430,558)(431,556)
(432,555);
s2 := Sym(576)!(  1,291)(  2,292)(  3,290)(  4,289)(  5,295)(  6,296)(  7,294)
(  8,293)(  9,299)( 10,300)( 11,298)( 12,297)( 13,303)( 14,304)( 15,302)
( 16,301)( 17,307)( 18,308)( 19,306)( 20,305)( 21,311)( 22,312)( 23,310)
( 24,309)( 25,315)( 26,316)( 27,314)( 28,313)( 29,319)( 30,320)( 31,318)
( 32,317)( 33,323)( 34,324)( 35,322)( 36,321)( 37,327)( 38,328)( 39,326)
( 40,325)( 41,331)( 42,332)( 43,330)( 44,329)( 45,335)( 46,336)( 47,334)
( 48,333)( 49,339)( 50,340)( 51,338)( 52,337)( 53,343)( 54,344)( 55,342)
( 56,341)( 57,347)( 58,348)( 59,346)( 60,345)( 61,351)( 62,352)( 63,350)
( 64,349)( 65,355)( 66,356)( 67,354)( 68,353)( 69,359)( 70,360)( 71,358)
( 72,357)( 73,363)( 74,364)( 75,362)( 76,361)( 77,367)( 78,368)( 79,366)
( 80,365)( 81,371)( 82,372)( 83,370)( 84,369)( 85,375)( 86,376)( 87,374)
( 88,373)( 89,379)( 90,380)( 91,378)( 92,377)( 93,383)( 94,384)( 95,382)
( 96,381)( 97,387)( 98,388)( 99,386)(100,385)(101,391)(102,392)(103,390)
(104,389)(105,395)(106,396)(107,394)(108,393)(109,399)(110,400)(111,398)
(112,397)(113,403)(114,404)(115,402)(116,401)(117,407)(118,408)(119,406)
(120,405)(121,411)(122,412)(123,410)(124,409)(125,415)(126,416)(127,414)
(128,413)(129,419)(130,420)(131,418)(132,417)(133,423)(134,424)(135,422)
(136,421)(137,427)(138,428)(139,426)(140,425)(141,431)(142,432)(143,430)
(144,429)(145,507)(146,508)(147,506)(148,505)(149,511)(150,512)(151,510)
(152,509)(153,515)(154,516)(155,514)(156,513)(157,519)(158,520)(159,518)
(160,517)(161,523)(162,524)(163,522)(164,521)(165,527)(166,528)(167,526)
(168,525)(169,531)(170,532)(171,530)(172,529)(173,535)(174,536)(175,534)
(176,533)(177,539)(178,540)(179,538)(180,537)(181,543)(182,544)(183,542)
(184,541)(185,547)(186,548)(187,546)(188,545)(189,551)(190,552)(191,550)
(192,549)(193,555)(194,556)(195,554)(196,553)(197,559)(198,560)(199,558)
(200,557)(201,563)(202,564)(203,562)(204,561)(205,567)(206,568)(207,566)
(208,565)(209,571)(210,572)(211,570)(212,569)(213,575)(214,576)(215,574)
(216,573)(217,435)(218,436)(219,434)(220,433)(221,439)(222,440)(223,438)
(224,437)(225,443)(226,444)(227,442)(228,441)(229,447)(230,448)(231,446)
(232,445)(233,451)(234,452)(235,450)(236,449)(237,455)(238,456)(239,454)
(240,453)(241,459)(242,460)(243,458)(244,457)(245,463)(246,464)(247,462)
(248,461)(249,467)(250,468)(251,466)(252,465)(253,471)(254,472)(255,470)
(256,469)(257,475)(258,476)(259,474)(260,473)(261,479)(262,480)(263,478)
(264,477)(265,483)(266,484)(267,482)(268,481)(269,487)(270,488)(271,486)
(272,485)(273,491)(274,492)(275,490)(276,489)(277,495)(278,496)(279,494)
(280,493)(281,499)(282,500)(283,498)(284,497)(285,503)(286,504)(287,502)
(288,501);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope