Polytope of Type {4,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,36}*1152e
if this polytope has a name.
Group : SmallGroup(1152,154378)
Rank : 3
Schlafli Type : {4,36}
Number of vertices, edges, etc : 16, 288, 144
Order of s0s1s2 : 72
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,18}*576b
   3-fold quotients : {4,12}*384e
   4-fold quotients : {4,18}*288
   6-fold quotients : {4,6}*192b
   8-fold quotients : {4,18}*144a, {4,9}*144, {4,18}*144b, {4,18}*144c
   12-fold quotients : {4,6}*96
   16-fold quotients : {4,9}*72, {2,18}*72
   24-fold quotients : {4,6}*48a, {4,3}*48, {4,6}*48b, {4,6}*48c
   32-fold quotients : {2,9}*36
   48-fold quotients : {4,3}*24, {2,6}*24
   72-fold quotients : {4,2}*16
   96-fold quotients : {2,3}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,293)(  2,294)(  3,296)(  4,295)(  5,290)(  6,289)(  7,291)(  8,292)
(  9,301)( 10,302)( 11,304)( 12,303)( 13,298)( 14,297)( 15,299)( 16,300)
( 17,309)( 18,310)( 19,312)( 20,311)( 21,306)( 22,305)( 23,307)( 24,308)
( 25,317)( 26,318)( 27,320)( 28,319)( 29,314)( 30,313)( 31,315)( 32,316)
( 33,325)( 34,326)( 35,328)( 36,327)( 37,322)( 38,321)( 39,323)( 40,324)
( 41,333)( 42,334)( 43,336)( 44,335)( 45,330)( 46,329)( 47,331)( 48,332)
( 49,341)( 50,342)( 51,344)( 52,343)( 53,338)( 54,337)( 55,339)( 56,340)
( 57,349)( 58,350)( 59,352)( 60,351)( 61,346)( 62,345)( 63,347)( 64,348)
( 65,357)( 66,358)( 67,360)( 68,359)( 69,354)( 70,353)( 71,355)( 72,356)
( 73,366)( 74,365)( 75,367)( 76,368)( 77,361)( 78,362)( 79,364)( 80,363)
( 81,374)( 82,373)( 83,375)( 84,376)( 85,369)( 86,370)( 87,372)( 88,371)
( 89,382)( 90,381)( 91,383)( 92,384)( 93,377)( 94,378)( 95,380)( 96,379)
( 97,390)( 98,389)( 99,391)(100,392)(101,385)(102,386)(103,388)(104,387)
(105,398)(106,397)(107,399)(108,400)(109,393)(110,394)(111,396)(112,395)
(113,406)(114,405)(115,407)(116,408)(117,401)(118,402)(119,404)(120,403)
(121,414)(122,413)(123,415)(124,416)(125,409)(126,410)(127,412)(128,411)
(129,422)(130,421)(131,423)(132,424)(133,417)(134,418)(135,420)(136,419)
(137,430)(138,429)(139,431)(140,432)(141,425)(142,426)(143,428)(144,427)
(145,509)(146,510)(147,512)(148,511)(149,506)(150,505)(151,507)(152,508)
(153,517)(154,518)(155,520)(156,519)(157,514)(158,513)(159,515)(160,516)
(161,525)(162,526)(163,528)(164,527)(165,522)(166,521)(167,523)(168,524)
(169,533)(170,534)(171,536)(172,535)(173,530)(174,529)(175,531)(176,532)
(177,541)(178,542)(179,544)(180,543)(181,538)(182,537)(183,539)(184,540)
(185,549)(186,550)(187,552)(188,551)(189,546)(190,545)(191,547)(192,548)
(193,557)(194,558)(195,560)(196,559)(197,554)(198,553)(199,555)(200,556)
(201,565)(202,566)(203,568)(204,567)(205,562)(206,561)(207,563)(208,564)
(209,573)(210,574)(211,576)(212,575)(213,570)(214,569)(215,571)(216,572)
(217,437)(218,438)(219,440)(220,439)(221,434)(222,433)(223,435)(224,436)
(225,445)(226,446)(227,448)(228,447)(229,442)(230,441)(231,443)(232,444)
(233,453)(234,454)(235,456)(236,455)(237,450)(238,449)(239,451)(240,452)
(241,461)(242,462)(243,464)(244,463)(245,458)(246,457)(247,459)(248,460)
(249,469)(250,470)(251,472)(252,471)(253,466)(254,465)(255,467)(256,468)
(257,477)(258,478)(259,480)(260,479)(261,474)(262,473)(263,475)(264,476)
(265,485)(266,486)(267,488)(268,487)(269,482)(270,481)(271,483)(272,484)
(273,493)(274,494)(275,496)(276,495)(277,490)(278,489)(279,491)(280,492)
(281,501)(282,502)(283,504)(284,503)(285,498)(286,497)(287,499)(288,500);;
s1 := (  1,145)(  2,146)(  3,148)(  4,147)(  5,151)(  6,152)(  7,149)(  8,150)
(  9,161)( 10,162)( 11,164)( 12,163)( 13,167)( 14,168)( 15,165)( 16,166)
( 17,153)( 18,154)( 19,156)( 20,155)( 21,159)( 22,160)( 23,157)( 24,158)
( 25,209)( 26,210)( 27,212)( 28,211)( 29,215)( 30,216)( 31,213)( 32,214)
( 33,201)( 34,202)( 35,204)( 36,203)( 37,207)( 38,208)( 39,205)( 40,206)
( 41,193)( 42,194)( 43,196)( 44,195)( 45,199)( 46,200)( 47,197)( 48,198)
( 49,185)( 50,186)( 51,188)( 52,187)( 53,191)( 54,192)( 55,189)( 56,190)
( 57,177)( 58,178)( 59,180)( 60,179)( 61,183)( 62,184)( 63,181)( 64,182)
( 65,169)( 66,170)( 67,172)( 68,171)( 69,175)( 70,176)( 71,173)( 72,174)
( 73,218)( 74,217)( 75,219)( 76,220)( 77,224)( 78,223)( 79,222)( 80,221)
( 81,234)( 82,233)( 83,235)( 84,236)( 85,240)( 86,239)( 87,238)( 88,237)
( 89,226)( 90,225)( 91,227)( 92,228)( 93,232)( 94,231)( 95,230)( 96,229)
( 97,282)( 98,281)( 99,283)(100,284)(101,288)(102,287)(103,286)(104,285)
(105,274)(106,273)(107,275)(108,276)(109,280)(110,279)(111,278)(112,277)
(113,266)(114,265)(115,267)(116,268)(117,272)(118,271)(119,270)(120,269)
(121,258)(122,257)(123,259)(124,260)(125,264)(126,263)(127,262)(128,261)
(129,250)(130,249)(131,251)(132,252)(133,256)(134,255)(135,254)(136,253)
(137,242)(138,241)(139,243)(140,244)(141,248)(142,247)(143,246)(144,245)
(289,434)(290,433)(291,435)(292,436)(293,440)(294,439)(295,438)(296,437)
(297,450)(298,449)(299,451)(300,452)(301,456)(302,455)(303,454)(304,453)
(305,442)(306,441)(307,443)(308,444)(309,448)(310,447)(311,446)(312,445)
(313,498)(314,497)(315,499)(316,500)(317,504)(318,503)(319,502)(320,501)
(321,490)(322,489)(323,491)(324,492)(325,496)(326,495)(327,494)(328,493)
(329,482)(330,481)(331,483)(332,484)(333,488)(334,487)(335,486)(336,485)
(337,474)(338,473)(339,475)(340,476)(341,480)(342,479)(343,478)(344,477)
(345,466)(346,465)(347,467)(348,468)(349,472)(350,471)(351,470)(352,469)
(353,458)(354,457)(355,459)(356,460)(357,464)(358,463)(359,462)(360,461)
(361,505)(362,506)(363,508)(364,507)(365,511)(366,512)(367,509)(368,510)
(369,521)(370,522)(371,524)(372,523)(373,527)(374,528)(375,525)(376,526)
(377,513)(378,514)(379,516)(380,515)(381,519)(382,520)(383,517)(384,518)
(385,569)(386,570)(387,572)(388,571)(389,575)(390,576)(391,573)(392,574)
(393,561)(394,562)(395,564)(396,563)(397,567)(398,568)(399,565)(400,566)
(401,553)(402,554)(403,556)(404,555)(405,559)(406,560)(407,557)(408,558)
(409,545)(410,546)(411,548)(412,547)(413,551)(414,552)(415,549)(416,550)
(417,537)(418,538)(419,540)(420,539)(421,543)(422,544)(423,541)(424,542)
(425,529)(426,530)(427,532)(428,531)(429,535)(430,536)(431,533)(432,534);;
s2 := (  1, 25)(  2, 26)(  3, 31)(  4, 32)(  5, 30)(  6, 29)(  7, 27)(  8, 28)
(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)( 16, 44)
( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)( 24, 36)
( 49, 65)( 50, 66)( 51, 71)( 52, 72)( 53, 70)( 54, 69)( 55, 67)( 56, 68)
( 59, 63)( 60, 64)( 61, 62)( 73, 97)( 74, 98)( 75,103)( 76,104)( 77,102)
( 78,101)( 79, 99)( 80,100)( 81,113)( 82,114)( 83,119)( 84,120)( 85,118)
( 86,117)( 87,115)( 88,116)( 89,105)( 90,106)( 91,111)( 92,112)( 93,110)
( 94,109)( 95,107)( 96,108)(121,137)(122,138)(123,143)(124,144)(125,142)
(126,141)(127,139)(128,140)(131,135)(132,136)(133,134)(145,170)(146,169)
(147,176)(148,175)(149,173)(150,174)(151,172)(152,171)(153,186)(154,185)
(155,192)(156,191)(157,189)(158,190)(159,188)(160,187)(161,178)(162,177)
(163,184)(164,183)(165,181)(166,182)(167,180)(168,179)(193,210)(194,209)
(195,216)(196,215)(197,213)(198,214)(199,212)(200,211)(201,202)(203,208)
(204,207)(217,242)(218,241)(219,248)(220,247)(221,245)(222,246)(223,244)
(224,243)(225,258)(226,257)(227,264)(228,263)(229,261)(230,262)(231,260)
(232,259)(233,250)(234,249)(235,256)(236,255)(237,253)(238,254)(239,252)
(240,251)(265,282)(266,281)(267,288)(268,287)(269,285)(270,286)(271,284)
(272,283)(273,274)(275,280)(276,279)(289,314)(290,313)(291,320)(292,319)
(293,317)(294,318)(295,316)(296,315)(297,330)(298,329)(299,336)(300,335)
(301,333)(302,334)(303,332)(304,331)(305,322)(306,321)(307,328)(308,327)
(309,325)(310,326)(311,324)(312,323)(337,354)(338,353)(339,360)(340,359)
(341,357)(342,358)(343,356)(344,355)(345,346)(347,352)(348,351)(361,386)
(362,385)(363,392)(364,391)(365,389)(366,390)(367,388)(368,387)(369,402)
(370,401)(371,408)(372,407)(373,405)(374,406)(375,404)(376,403)(377,394)
(378,393)(379,400)(380,399)(381,397)(382,398)(383,396)(384,395)(409,426)
(410,425)(411,432)(412,431)(413,429)(414,430)(415,428)(416,427)(417,418)
(419,424)(420,423)(433,457)(434,458)(435,463)(436,464)(437,462)(438,461)
(439,459)(440,460)(441,473)(442,474)(443,479)(444,480)(445,478)(446,477)
(447,475)(448,476)(449,465)(450,466)(451,471)(452,472)(453,470)(454,469)
(455,467)(456,468)(481,497)(482,498)(483,503)(484,504)(485,502)(486,501)
(487,499)(488,500)(491,495)(492,496)(493,494)(505,529)(506,530)(507,535)
(508,536)(509,534)(510,533)(511,531)(512,532)(513,545)(514,546)(515,551)
(516,552)(517,550)(518,549)(519,547)(520,548)(521,537)(522,538)(523,543)
(524,544)(525,542)(526,541)(527,539)(528,540)(553,569)(554,570)(555,575)
(556,576)(557,574)(558,573)(559,571)(560,572)(563,567)(564,568)(565,566);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,293)(  2,294)(  3,296)(  4,295)(  5,290)(  6,289)(  7,291)
(  8,292)(  9,301)( 10,302)( 11,304)( 12,303)( 13,298)( 14,297)( 15,299)
( 16,300)( 17,309)( 18,310)( 19,312)( 20,311)( 21,306)( 22,305)( 23,307)
( 24,308)( 25,317)( 26,318)( 27,320)( 28,319)( 29,314)( 30,313)( 31,315)
( 32,316)( 33,325)( 34,326)( 35,328)( 36,327)( 37,322)( 38,321)( 39,323)
( 40,324)( 41,333)( 42,334)( 43,336)( 44,335)( 45,330)( 46,329)( 47,331)
( 48,332)( 49,341)( 50,342)( 51,344)( 52,343)( 53,338)( 54,337)( 55,339)
( 56,340)( 57,349)( 58,350)( 59,352)( 60,351)( 61,346)( 62,345)( 63,347)
( 64,348)( 65,357)( 66,358)( 67,360)( 68,359)( 69,354)( 70,353)( 71,355)
( 72,356)( 73,366)( 74,365)( 75,367)( 76,368)( 77,361)( 78,362)( 79,364)
( 80,363)( 81,374)( 82,373)( 83,375)( 84,376)( 85,369)( 86,370)( 87,372)
( 88,371)( 89,382)( 90,381)( 91,383)( 92,384)( 93,377)( 94,378)( 95,380)
( 96,379)( 97,390)( 98,389)( 99,391)(100,392)(101,385)(102,386)(103,388)
(104,387)(105,398)(106,397)(107,399)(108,400)(109,393)(110,394)(111,396)
(112,395)(113,406)(114,405)(115,407)(116,408)(117,401)(118,402)(119,404)
(120,403)(121,414)(122,413)(123,415)(124,416)(125,409)(126,410)(127,412)
(128,411)(129,422)(130,421)(131,423)(132,424)(133,417)(134,418)(135,420)
(136,419)(137,430)(138,429)(139,431)(140,432)(141,425)(142,426)(143,428)
(144,427)(145,509)(146,510)(147,512)(148,511)(149,506)(150,505)(151,507)
(152,508)(153,517)(154,518)(155,520)(156,519)(157,514)(158,513)(159,515)
(160,516)(161,525)(162,526)(163,528)(164,527)(165,522)(166,521)(167,523)
(168,524)(169,533)(170,534)(171,536)(172,535)(173,530)(174,529)(175,531)
(176,532)(177,541)(178,542)(179,544)(180,543)(181,538)(182,537)(183,539)
(184,540)(185,549)(186,550)(187,552)(188,551)(189,546)(190,545)(191,547)
(192,548)(193,557)(194,558)(195,560)(196,559)(197,554)(198,553)(199,555)
(200,556)(201,565)(202,566)(203,568)(204,567)(205,562)(206,561)(207,563)
(208,564)(209,573)(210,574)(211,576)(212,575)(213,570)(214,569)(215,571)
(216,572)(217,437)(218,438)(219,440)(220,439)(221,434)(222,433)(223,435)
(224,436)(225,445)(226,446)(227,448)(228,447)(229,442)(230,441)(231,443)
(232,444)(233,453)(234,454)(235,456)(236,455)(237,450)(238,449)(239,451)
(240,452)(241,461)(242,462)(243,464)(244,463)(245,458)(246,457)(247,459)
(248,460)(249,469)(250,470)(251,472)(252,471)(253,466)(254,465)(255,467)
(256,468)(257,477)(258,478)(259,480)(260,479)(261,474)(262,473)(263,475)
(264,476)(265,485)(266,486)(267,488)(268,487)(269,482)(270,481)(271,483)
(272,484)(273,493)(274,494)(275,496)(276,495)(277,490)(278,489)(279,491)
(280,492)(281,501)(282,502)(283,504)(284,503)(285,498)(286,497)(287,499)
(288,500);
s1 := Sym(576)!(  1,145)(  2,146)(  3,148)(  4,147)(  5,151)(  6,152)(  7,149)
(  8,150)(  9,161)( 10,162)( 11,164)( 12,163)( 13,167)( 14,168)( 15,165)
( 16,166)( 17,153)( 18,154)( 19,156)( 20,155)( 21,159)( 22,160)( 23,157)
( 24,158)( 25,209)( 26,210)( 27,212)( 28,211)( 29,215)( 30,216)( 31,213)
( 32,214)( 33,201)( 34,202)( 35,204)( 36,203)( 37,207)( 38,208)( 39,205)
( 40,206)( 41,193)( 42,194)( 43,196)( 44,195)( 45,199)( 46,200)( 47,197)
( 48,198)( 49,185)( 50,186)( 51,188)( 52,187)( 53,191)( 54,192)( 55,189)
( 56,190)( 57,177)( 58,178)( 59,180)( 60,179)( 61,183)( 62,184)( 63,181)
( 64,182)( 65,169)( 66,170)( 67,172)( 68,171)( 69,175)( 70,176)( 71,173)
( 72,174)( 73,218)( 74,217)( 75,219)( 76,220)( 77,224)( 78,223)( 79,222)
( 80,221)( 81,234)( 82,233)( 83,235)( 84,236)( 85,240)( 86,239)( 87,238)
( 88,237)( 89,226)( 90,225)( 91,227)( 92,228)( 93,232)( 94,231)( 95,230)
( 96,229)( 97,282)( 98,281)( 99,283)(100,284)(101,288)(102,287)(103,286)
(104,285)(105,274)(106,273)(107,275)(108,276)(109,280)(110,279)(111,278)
(112,277)(113,266)(114,265)(115,267)(116,268)(117,272)(118,271)(119,270)
(120,269)(121,258)(122,257)(123,259)(124,260)(125,264)(126,263)(127,262)
(128,261)(129,250)(130,249)(131,251)(132,252)(133,256)(134,255)(135,254)
(136,253)(137,242)(138,241)(139,243)(140,244)(141,248)(142,247)(143,246)
(144,245)(289,434)(290,433)(291,435)(292,436)(293,440)(294,439)(295,438)
(296,437)(297,450)(298,449)(299,451)(300,452)(301,456)(302,455)(303,454)
(304,453)(305,442)(306,441)(307,443)(308,444)(309,448)(310,447)(311,446)
(312,445)(313,498)(314,497)(315,499)(316,500)(317,504)(318,503)(319,502)
(320,501)(321,490)(322,489)(323,491)(324,492)(325,496)(326,495)(327,494)
(328,493)(329,482)(330,481)(331,483)(332,484)(333,488)(334,487)(335,486)
(336,485)(337,474)(338,473)(339,475)(340,476)(341,480)(342,479)(343,478)
(344,477)(345,466)(346,465)(347,467)(348,468)(349,472)(350,471)(351,470)
(352,469)(353,458)(354,457)(355,459)(356,460)(357,464)(358,463)(359,462)
(360,461)(361,505)(362,506)(363,508)(364,507)(365,511)(366,512)(367,509)
(368,510)(369,521)(370,522)(371,524)(372,523)(373,527)(374,528)(375,525)
(376,526)(377,513)(378,514)(379,516)(380,515)(381,519)(382,520)(383,517)
(384,518)(385,569)(386,570)(387,572)(388,571)(389,575)(390,576)(391,573)
(392,574)(393,561)(394,562)(395,564)(396,563)(397,567)(398,568)(399,565)
(400,566)(401,553)(402,554)(403,556)(404,555)(405,559)(406,560)(407,557)
(408,558)(409,545)(410,546)(411,548)(412,547)(413,551)(414,552)(415,549)
(416,550)(417,537)(418,538)(419,540)(420,539)(421,543)(422,544)(423,541)
(424,542)(425,529)(426,530)(427,532)(428,531)(429,535)(430,536)(431,533)
(432,534);
s2 := Sym(576)!(  1, 25)(  2, 26)(  3, 31)(  4, 32)(  5, 30)(  6, 29)(  7, 27)
(  8, 28)(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)
( 16, 44)( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)
( 24, 36)( 49, 65)( 50, 66)( 51, 71)( 52, 72)( 53, 70)( 54, 69)( 55, 67)
( 56, 68)( 59, 63)( 60, 64)( 61, 62)( 73, 97)( 74, 98)( 75,103)( 76,104)
( 77,102)( 78,101)( 79, 99)( 80,100)( 81,113)( 82,114)( 83,119)( 84,120)
( 85,118)( 86,117)( 87,115)( 88,116)( 89,105)( 90,106)( 91,111)( 92,112)
( 93,110)( 94,109)( 95,107)( 96,108)(121,137)(122,138)(123,143)(124,144)
(125,142)(126,141)(127,139)(128,140)(131,135)(132,136)(133,134)(145,170)
(146,169)(147,176)(148,175)(149,173)(150,174)(151,172)(152,171)(153,186)
(154,185)(155,192)(156,191)(157,189)(158,190)(159,188)(160,187)(161,178)
(162,177)(163,184)(164,183)(165,181)(166,182)(167,180)(168,179)(193,210)
(194,209)(195,216)(196,215)(197,213)(198,214)(199,212)(200,211)(201,202)
(203,208)(204,207)(217,242)(218,241)(219,248)(220,247)(221,245)(222,246)
(223,244)(224,243)(225,258)(226,257)(227,264)(228,263)(229,261)(230,262)
(231,260)(232,259)(233,250)(234,249)(235,256)(236,255)(237,253)(238,254)
(239,252)(240,251)(265,282)(266,281)(267,288)(268,287)(269,285)(270,286)
(271,284)(272,283)(273,274)(275,280)(276,279)(289,314)(290,313)(291,320)
(292,319)(293,317)(294,318)(295,316)(296,315)(297,330)(298,329)(299,336)
(300,335)(301,333)(302,334)(303,332)(304,331)(305,322)(306,321)(307,328)
(308,327)(309,325)(310,326)(311,324)(312,323)(337,354)(338,353)(339,360)
(340,359)(341,357)(342,358)(343,356)(344,355)(345,346)(347,352)(348,351)
(361,386)(362,385)(363,392)(364,391)(365,389)(366,390)(367,388)(368,387)
(369,402)(370,401)(371,408)(372,407)(373,405)(374,406)(375,404)(376,403)
(377,394)(378,393)(379,400)(380,399)(381,397)(382,398)(383,396)(384,395)
(409,426)(410,425)(411,432)(412,431)(413,429)(414,430)(415,428)(416,427)
(417,418)(419,424)(420,423)(433,457)(434,458)(435,463)(436,464)(437,462)
(438,461)(439,459)(440,460)(441,473)(442,474)(443,479)(444,480)(445,478)
(446,477)(447,475)(448,476)(449,465)(450,466)(451,471)(452,472)(453,470)
(454,469)(455,467)(456,468)(481,497)(482,498)(483,503)(484,504)(485,502)
(486,501)(487,499)(488,500)(491,495)(492,496)(493,494)(505,529)(506,530)
(507,535)(508,536)(509,534)(510,533)(511,531)(512,532)(513,545)(514,546)
(515,551)(516,552)(517,550)(518,549)(519,547)(520,548)(521,537)(522,538)
(523,543)(524,544)(525,542)(526,541)(527,539)(528,540)(553,569)(554,570)
(555,575)(556,576)(557,574)(558,573)(559,571)(560,572)(563,567)(564,568)
(565,566);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 >; 
 
References : None.
to this polytope