include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {36,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,4}*1152e
if this polytope has a name.
Group : SmallGroup(1152,154378)
Rank : 3
Schlafli Type : {36,4}
Number of vertices, edges, etc : 144, 288, 16
Order of s0s1s2 : 72
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {18,4}*576b
3-fold quotients : {12,4}*384e
4-fold quotients : {18,4}*288
6-fold quotients : {6,4}*192b
8-fold quotients : {18,4}*144a, {9,4}*144, {18,4}*144b, {18,4}*144c
12-fold quotients : {6,4}*96
16-fold quotients : {9,4}*72, {18,2}*72
24-fold quotients : {6,4}*48a, {3,4}*48, {6,4}*48b, {6,4}*48c
32-fold quotients : {9,2}*36
48-fold quotients : {3,4}*24, {6,2}*24
72-fold quotients : {2,4}*16
96-fold quotients : {3,2}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 7)( 6, 8)( 9, 17)( 10, 18)( 11, 20)( 12, 19)( 13, 23)
( 14, 24)( 15, 21)( 16, 22)( 25, 65)( 26, 66)( 27, 68)( 28, 67)( 29, 71)
( 30, 72)( 31, 69)( 32, 70)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 63)
( 38, 64)( 39, 61)( 40, 62)( 41, 49)( 42, 50)( 43, 52)( 44, 51)( 45, 55)
( 46, 56)( 47, 53)( 48, 54)( 75, 76)( 77, 79)( 78, 80)( 81, 89)( 82, 90)
( 83, 92)( 84, 91)( 85, 95)( 86, 96)( 87, 93)( 88, 94)( 97,137)( 98,138)
( 99,140)(100,139)(101,143)(102,144)(103,141)(104,142)(105,129)(106,130)
(107,132)(108,131)(109,135)(110,136)(111,133)(112,134)(113,121)(114,122)
(115,124)(116,123)(117,127)(118,128)(119,125)(120,126)(145,146)(149,152)
(150,151)(153,162)(154,161)(155,163)(156,164)(157,168)(158,167)(159,166)
(160,165)(169,210)(170,209)(171,211)(172,212)(173,216)(174,215)(175,214)
(176,213)(177,202)(178,201)(179,203)(180,204)(181,208)(182,207)(183,206)
(184,205)(185,194)(186,193)(187,195)(188,196)(189,200)(190,199)(191,198)
(192,197)(217,218)(221,224)(222,223)(225,234)(226,233)(227,235)(228,236)
(229,240)(230,239)(231,238)(232,237)(241,282)(242,281)(243,283)(244,284)
(245,288)(246,287)(247,286)(248,285)(249,274)(250,273)(251,275)(252,276)
(253,280)(254,279)(255,278)(256,277)(257,266)(258,265)(259,267)(260,268)
(261,272)(262,271)(263,270)(264,269)(289,290)(293,296)(294,295)(297,306)
(298,305)(299,307)(300,308)(301,312)(302,311)(303,310)(304,309)(313,354)
(314,353)(315,355)(316,356)(317,360)(318,359)(319,358)(320,357)(321,346)
(322,345)(323,347)(324,348)(325,352)(326,351)(327,350)(328,349)(329,338)
(330,337)(331,339)(332,340)(333,344)(334,343)(335,342)(336,341)(361,362)
(365,368)(366,367)(369,378)(370,377)(371,379)(372,380)(373,384)(374,383)
(375,382)(376,381)(385,426)(386,425)(387,427)(388,428)(389,432)(390,431)
(391,430)(392,429)(393,418)(394,417)(395,419)(396,420)(397,424)(398,423)
(399,422)(400,421)(401,410)(402,409)(403,411)(404,412)(405,416)(406,415)
(407,414)(408,413)(435,436)(437,439)(438,440)(441,449)(442,450)(443,452)
(444,451)(445,455)(446,456)(447,453)(448,454)(457,497)(458,498)(459,500)
(460,499)(461,503)(462,504)(463,501)(464,502)(465,489)(466,490)(467,492)
(468,491)(469,495)(470,496)(471,493)(472,494)(473,481)(474,482)(475,484)
(476,483)(477,487)(478,488)(479,485)(480,486)(507,508)(509,511)(510,512)
(513,521)(514,522)(515,524)(516,523)(517,527)(518,528)(519,525)(520,526)
(529,569)(530,570)(531,572)(532,571)(533,575)(534,576)(535,573)(536,574)
(537,561)(538,562)(539,564)(540,563)(541,567)(542,568)(543,565)(544,566)
(545,553)(546,554)(547,556)(548,555)(549,559)(550,560)(551,557)(552,558);;
s1 := ( 1,313)( 2,314)( 3,319)( 4,320)( 5,318)( 6,317)( 7,315)( 8,316)
( 9,329)( 10,330)( 11,335)( 12,336)( 13,334)( 14,333)( 15,331)( 16,332)
( 17,321)( 18,322)( 19,327)( 20,328)( 21,326)( 22,325)( 23,323)( 24,324)
( 25,289)( 26,290)( 27,295)( 28,296)( 29,294)( 30,293)( 31,291)( 32,292)
( 33,305)( 34,306)( 35,311)( 36,312)( 37,310)( 38,309)( 39,307)( 40,308)
( 41,297)( 42,298)( 43,303)( 44,304)( 45,302)( 46,301)( 47,299)( 48,300)
( 49,353)( 50,354)( 51,359)( 52,360)( 53,358)( 54,357)( 55,355)( 56,356)
( 57,345)( 58,346)( 59,351)( 60,352)( 61,350)( 62,349)( 63,347)( 64,348)
( 65,337)( 66,338)( 67,343)( 68,344)( 69,342)( 70,341)( 71,339)( 72,340)
( 73,386)( 74,385)( 75,392)( 76,391)( 77,389)( 78,390)( 79,388)( 80,387)
( 81,402)( 82,401)( 83,408)( 84,407)( 85,405)( 86,406)( 87,404)( 88,403)
( 89,394)( 90,393)( 91,400)( 92,399)( 93,397)( 94,398)( 95,396)( 96,395)
( 97,362)( 98,361)( 99,368)(100,367)(101,365)(102,366)(103,364)(104,363)
(105,378)(106,377)(107,384)(108,383)(109,381)(110,382)(111,380)(112,379)
(113,370)(114,369)(115,376)(116,375)(117,373)(118,374)(119,372)(120,371)
(121,426)(122,425)(123,432)(124,431)(125,429)(126,430)(127,428)(128,427)
(129,418)(130,417)(131,424)(132,423)(133,421)(134,422)(135,420)(136,419)
(137,410)(138,409)(139,416)(140,415)(141,413)(142,414)(143,412)(144,411)
(145,530)(146,529)(147,536)(148,535)(149,533)(150,534)(151,532)(152,531)
(153,546)(154,545)(155,552)(156,551)(157,549)(158,550)(159,548)(160,547)
(161,538)(162,537)(163,544)(164,543)(165,541)(166,542)(167,540)(168,539)
(169,506)(170,505)(171,512)(172,511)(173,509)(174,510)(175,508)(176,507)
(177,522)(178,521)(179,528)(180,527)(181,525)(182,526)(183,524)(184,523)
(185,514)(186,513)(187,520)(188,519)(189,517)(190,518)(191,516)(192,515)
(193,570)(194,569)(195,576)(196,575)(197,573)(198,574)(199,572)(200,571)
(201,562)(202,561)(203,568)(204,567)(205,565)(206,566)(207,564)(208,563)
(209,554)(210,553)(211,560)(212,559)(213,557)(214,558)(215,556)(216,555)
(217,458)(218,457)(219,464)(220,463)(221,461)(222,462)(223,460)(224,459)
(225,474)(226,473)(227,480)(228,479)(229,477)(230,478)(231,476)(232,475)
(233,466)(234,465)(235,472)(236,471)(237,469)(238,470)(239,468)(240,467)
(241,434)(242,433)(243,440)(244,439)(245,437)(246,438)(247,436)(248,435)
(249,450)(250,449)(251,456)(252,455)(253,453)(254,454)(255,452)(256,451)
(257,442)(258,441)(259,448)(260,447)(261,445)(262,446)(263,444)(264,443)
(265,498)(266,497)(267,504)(268,503)(269,501)(270,502)(271,500)(272,499)
(273,490)(274,489)(275,496)(276,495)(277,493)(278,494)(279,492)(280,491)
(281,482)(282,481)(283,488)(284,487)(285,485)(286,486)(287,484)(288,483);;
s2 := ( 1,147)( 2,148)( 3,146)( 4,145)( 5,151)( 6,152)( 7,150)( 8,149)
( 9,155)( 10,156)( 11,154)( 12,153)( 13,159)( 14,160)( 15,158)( 16,157)
( 17,163)( 18,164)( 19,162)( 20,161)( 21,167)( 22,168)( 23,166)( 24,165)
( 25,171)( 26,172)( 27,170)( 28,169)( 29,175)( 30,176)( 31,174)( 32,173)
( 33,179)( 34,180)( 35,178)( 36,177)( 37,183)( 38,184)( 39,182)( 40,181)
( 41,187)( 42,188)( 43,186)( 44,185)( 45,191)( 46,192)( 47,190)( 48,189)
( 49,195)( 50,196)( 51,194)( 52,193)( 53,199)( 54,200)( 55,198)( 56,197)
( 57,203)( 58,204)( 59,202)( 60,201)( 61,207)( 62,208)( 63,206)( 64,205)
( 65,211)( 66,212)( 67,210)( 68,209)( 69,215)( 70,216)( 71,214)( 72,213)
( 73,220)( 74,219)( 75,217)( 76,218)( 77,224)( 78,223)( 79,221)( 80,222)
( 81,228)( 82,227)( 83,225)( 84,226)( 85,232)( 86,231)( 87,229)( 88,230)
( 89,236)( 90,235)( 91,233)( 92,234)( 93,240)( 94,239)( 95,237)( 96,238)
( 97,244)( 98,243)( 99,241)(100,242)(101,248)(102,247)(103,245)(104,246)
(105,252)(106,251)(107,249)(108,250)(109,256)(110,255)(111,253)(112,254)
(113,260)(114,259)(115,257)(116,258)(117,264)(118,263)(119,261)(120,262)
(121,268)(122,267)(123,265)(124,266)(125,272)(126,271)(127,269)(128,270)
(129,276)(130,275)(131,273)(132,274)(133,280)(134,279)(135,277)(136,278)
(137,284)(138,283)(139,281)(140,282)(141,288)(142,287)(143,285)(144,286)
(289,435)(290,436)(291,434)(292,433)(293,439)(294,440)(295,438)(296,437)
(297,443)(298,444)(299,442)(300,441)(301,447)(302,448)(303,446)(304,445)
(305,451)(306,452)(307,450)(308,449)(309,455)(310,456)(311,454)(312,453)
(313,459)(314,460)(315,458)(316,457)(317,463)(318,464)(319,462)(320,461)
(321,467)(322,468)(323,466)(324,465)(325,471)(326,472)(327,470)(328,469)
(329,475)(330,476)(331,474)(332,473)(333,479)(334,480)(335,478)(336,477)
(337,483)(338,484)(339,482)(340,481)(341,487)(342,488)(343,486)(344,485)
(345,491)(346,492)(347,490)(348,489)(349,495)(350,496)(351,494)(352,493)
(353,499)(354,500)(355,498)(356,497)(357,503)(358,504)(359,502)(360,501)
(361,508)(362,507)(363,505)(364,506)(365,512)(366,511)(367,509)(368,510)
(369,516)(370,515)(371,513)(372,514)(373,520)(374,519)(375,517)(376,518)
(377,524)(378,523)(379,521)(380,522)(381,528)(382,527)(383,525)(384,526)
(385,532)(386,531)(387,529)(388,530)(389,536)(390,535)(391,533)(392,534)
(393,540)(394,539)(395,537)(396,538)(397,544)(398,543)(399,541)(400,542)
(401,548)(402,547)(403,545)(404,546)(405,552)(406,551)(407,549)(408,550)
(409,556)(410,555)(411,553)(412,554)(413,560)(414,559)(415,557)(416,558)
(417,564)(418,563)(419,561)(420,562)(421,568)(422,567)(423,565)(424,566)
(425,572)(426,571)(427,569)(428,570)(429,576)(430,575)(431,573)(432,574);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 3, 4)( 5, 7)( 6, 8)( 9, 17)( 10, 18)( 11, 20)( 12, 19)
( 13, 23)( 14, 24)( 15, 21)( 16, 22)( 25, 65)( 26, 66)( 27, 68)( 28, 67)
( 29, 71)( 30, 72)( 31, 69)( 32, 70)( 33, 57)( 34, 58)( 35, 60)( 36, 59)
( 37, 63)( 38, 64)( 39, 61)( 40, 62)( 41, 49)( 42, 50)( 43, 52)( 44, 51)
( 45, 55)( 46, 56)( 47, 53)( 48, 54)( 75, 76)( 77, 79)( 78, 80)( 81, 89)
( 82, 90)( 83, 92)( 84, 91)( 85, 95)( 86, 96)( 87, 93)( 88, 94)( 97,137)
( 98,138)( 99,140)(100,139)(101,143)(102,144)(103,141)(104,142)(105,129)
(106,130)(107,132)(108,131)(109,135)(110,136)(111,133)(112,134)(113,121)
(114,122)(115,124)(116,123)(117,127)(118,128)(119,125)(120,126)(145,146)
(149,152)(150,151)(153,162)(154,161)(155,163)(156,164)(157,168)(158,167)
(159,166)(160,165)(169,210)(170,209)(171,211)(172,212)(173,216)(174,215)
(175,214)(176,213)(177,202)(178,201)(179,203)(180,204)(181,208)(182,207)
(183,206)(184,205)(185,194)(186,193)(187,195)(188,196)(189,200)(190,199)
(191,198)(192,197)(217,218)(221,224)(222,223)(225,234)(226,233)(227,235)
(228,236)(229,240)(230,239)(231,238)(232,237)(241,282)(242,281)(243,283)
(244,284)(245,288)(246,287)(247,286)(248,285)(249,274)(250,273)(251,275)
(252,276)(253,280)(254,279)(255,278)(256,277)(257,266)(258,265)(259,267)
(260,268)(261,272)(262,271)(263,270)(264,269)(289,290)(293,296)(294,295)
(297,306)(298,305)(299,307)(300,308)(301,312)(302,311)(303,310)(304,309)
(313,354)(314,353)(315,355)(316,356)(317,360)(318,359)(319,358)(320,357)
(321,346)(322,345)(323,347)(324,348)(325,352)(326,351)(327,350)(328,349)
(329,338)(330,337)(331,339)(332,340)(333,344)(334,343)(335,342)(336,341)
(361,362)(365,368)(366,367)(369,378)(370,377)(371,379)(372,380)(373,384)
(374,383)(375,382)(376,381)(385,426)(386,425)(387,427)(388,428)(389,432)
(390,431)(391,430)(392,429)(393,418)(394,417)(395,419)(396,420)(397,424)
(398,423)(399,422)(400,421)(401,410)(402,409)(403,411)(404,412)(405,416)
(406,415)(407,414)(408,413)(435,436)(437,439)(438,440)(441,449)(442,450)
(443,452)(444,451)(445,455)(446,456)(447,453)(448,454)(457,497)(458,498)
(459,500)(460,499)(461,503)(462,504)(463,501)(464,502)(465,489)(466,490)
(467,492)(468,491)(469,495)(470,496)(471,493)(472,494)(473,481)(474,482)
(475,484)(476,483)(477,487)(478,488)(479,485)(480,486)(507,508)(509,511)
(510,512)(513,521)(514,522)(515,524)(516,523)(517,527)(518,528)(519,525)
(520,526)(529,569)(530,570)(531,572)(532,571)(533,575)(534,576)(535,573)
(536,574)(537,561)(538,562)(539,564)(540,563)(541,567)(542,568)(543,565)
(544,566)(545,553)(546,554)(547,556)(548,555)(549,559)(550,560)(551,557)
(552,558);
s1 := Sym(576)!( 1,313)( 2,314)( 3,319)( 4,320)( 5,318)( 6,317)( 7,315)
( 8,316)( 9,329)( 10,330)( 11,335)( 12,336)( 13,334)( 14,333)( 15,331)
( 16,332)( 17,321)( 18,322)( 19,327)( 20,328)( 21,326)( 22,325)( 23,323)
( 24,324)( 25,289)( 26,290)( 27,295)( 28,296)( 29,294)( 30,293)( 31,291)
( 32,292)( 33,305)( 34,306)( 35,311)( 36,312)( 37,310)( 38,309)( 39,307)
( 40,308)( 41,297)( 42,298)( 43,303)( 44,304)( 45,302)( 46,301)( 47,299)
( 48,300)( 49,353)( 50,354)( 51,359)( 52,360)( 53,358)( 54,357)( 55,355)
( 56,356)( 57,345)( 58,346)( 59,351)( 60,352)( 61,350)( 62,349)( 63,347)
( 64,348)( 65,337)( 66,338)( 67,343)( 68,344)( 69,342)( 70,341)( 71,339)
( 72,340)( 73,386)( 74,385)( 75,392)( 76,391)( 77,389)( 78,390)( 79,388)
( 80,387)( 81,402)( 82,401)( 83,408)( 84,407)( 85,405)( 86,406)( 87,404)
( 88,403)( 89,394)( 90,393)( 91,400)( 92,399)( 93,397)( 94,398)( 95,396)
( 96,395)( 97,362)( 98,361)( 99,368)(100,367)(101,365)(102,366)(103,364)
(104,363)(105,378)(106,377)(107,384)(108,383)(109,381)(110,382)(111,380)
(112,379)(113,370)(114,369)(115,376)(116,375)(117,373)(118,374)(119,372)
(120,371)(121,426)(122,425)(123,432)(124,431)(125,429)(126,430)(127,428)
(128,427)(129,418)(130,417)(131,424)(132,423)(133,421)(134,422)(135,420)
(136,419)(137,410)(138,409)(139,416)(140,415)(141,413)(142,414)(143,412)
(144,411)(145,530)(146,529)(147,536)(148,535)(149,533)(150,534)(151,532)
(152,531)(153,546)(154,545)(155,552)(156,551)(157,549)(158,550)(159,548)
(160,547)(161,538)(162,537)(163,544)(164,543)(165,541)(166,542)(167,540)
(168,539)(169,506)(170,505)(171,512)(172,511)(173,509)(174,510)(175,508)
(176,507)(177,522)(178,521)(179,528)(180,527)(181,525)(182,526)(183,524)
(184,523)(185,514)(186,513)(187,520)(188,519)(189,517)(190,518)(191,516)
(192,515)(193,570)(194,569)(195,576)(196,575)(197,573)(198,574)(199,572)
(200,571)(201,562)(202,561)(203,568)(204,567)(205,565)(206,566)(207,564)
(208,563)(209,554)(210,553)(211,560)(212,559)(213,557)(214,558)(215,556)
(216,555)(217,458)(218,457)(219,464)(220,463)(221,461)(222,462)(223,460)
(224,459)(225,474)(226,473)(227,480)(228,479)(229,477)(230,478)(231,476)
(232,475)(233,466)(234,465)(235,472)(236,471)(237,469)(238,470)(239,468)
(240,467)(241,434)(242,433)(243,440)(244,439)(245,437)(246,438)(247,436)
(248,435)(249,450)(250,449)(251,456)(252,455)(253,453)(254,454)(255,452)
(256,451)(257,442)(258,441)(259,448)(260,447)(261,445)(262,446)(263,444)
(264,443)(265,498)(266,497)(267,504)(268,503)(269,501)(270,502)(271,500)
(272,499)(273,490)(274,489)(275,496)(276,495)(277,493)(278,494)(279,492)
(280,491)(281,482)(282,481)(283,488)(284,487)(285,485)(286,486)(287,484)
(288,483);
s2 := Sym(576)!( 1,147)( 2,148)( 3,146)( 4,145)( 5,151)( 6,152)( 7,150)
( 8,149)( 9,155)( 10,156)( 11,154)( 12,153)( 13,159)( 14,160)( 15,158)
( 16,157)( 17,163)( 18,164)( 19,162)( 20,161)( 21,167)( 22,168)( 23,166)
( 24,165)( 25,171)( 26,172)( 27,170)( 28,169)( 29,175)( 30,176)( 31,174)
( 32,173)( 33,179)( 34,180)( 35,178)( 36,177)( 37,183)( 38,184)( 39,182)
( 40,181)( 41,187)( 42,188)( 43,186)( 44,185)( 45,191)( 46,192)( 47,190)
( 48,189)( 49,195)( 50,196)( 51,194)( 52,193)( 53,199)( 54,200)( 55,198)
( 56,197)( 57,203)( 58,204)( 59,202)( 60,201)( 61,207)( 62,208)( 63,206)
( 64,205)( 65,211)( 66,212)( 67,210)( 68,209)( 69,215)( 70,216)( 71,214)
( 72,213)( 73,220)( 74,219)( 75,217)( 76,218)( 77,224)( 78,223)( 79,221)
( 80,222)( 81,228)( 82,227)( 83,225)( 84,226)( 85,232)( 86,231)( 87,229)
( 88,230)( 89,236)( 90,235)( 91,233)( 92,234)( 93,240)( 94,239)( 95,237)
( 96,238)( 97,244)( 98,243)( 99,241)(100,242)(101,248)(102,247)(103,245)
(104,246)(105,252)(106,251)(107,249)(108,250)(109,256)(110,255)(111,253)
(112,254)(113,260)(114,259)(115,257)(116,258)(117,264)(118,263)(119,261)
(120,262)(121,268)(122,267)(123,265)(124,266)(125,272)(126,271)(127,269)
(128,270)(129,276)(130,275)(131,273)(132,274)(133,280)(134,279)(135,277)
(136,278)(137,284)(138,283)(139,281)(140,282)(141,288)(142,287)(143,285)
(144,286)(289,435)(290,436)(291,434)(292,433)(293,439)(294,440)(295,438)
(296,437)(297,443)(298,444)(299,442)(300,441)(301,447)(302,448)(303,446)
(304,445)(305,451)(306,452)(307,450)(308,449)(309,455)(310,456)(311,454)
(312,453)(313,459)(314,460)(315,458)(316,457)(317,463)(318,464)(319,462)
(320,461)(321,467)(322,468)(323,466)(324,465)(325,471)(326,472)(327,470)
(328,469)(329,475)(330,476)(331,474)(332,473)(333,479)(334,480)(335,478)
(336,477)(337,483)(338,484)(339,482)(340,481)(341,487)(342,488)(343,486)
(344,485)(345,491)(346,492)(347,490)(348,489)(349,495)(350,496)(351,494)
(352,493)(353,499)(354,500)(355,498)(356,497)(357,503)(358,504)(359,502)
(360,501)(361,508)(362,507)(363,505)(364,506)(365,512)(366,511)(367,509)
(368,510)(369,516)(370,515)(371,513)(372,514)(373,520)(374,519)(375,517)
(376,518)(377,524)(378,523)(379,521)(380,522)(381,528)(382,527)(383,525)
(384,526)(385,532)(386,531)(387,529)(388,530)(389,536)(390,535)(391,533)
(392,534)(393,540)(394,539)(395,537)(396,538)(397,544)(398,543)(399,541)
(400,542)(401,548)(402,547)(403,545)(404,546)(405,552)(406,551)(407,549)
(408,550)(409,556)(410,555)(411,553)(412,554)(413,560)(414,559)(415,557)
(416,558)(417,564)(418,563)(419,561)(420,562)(421,568)(422,567)(423,565)
(424,566)(425,572)(426,571)(427,569)(428,570)(429,576)(430,575)(431,573)
(432,574);
poly := sub<Sym(576)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope