include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,36,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,36,4}*1152f
if this polytope has a name.
Group : SmallGroup(1152,155431)
Rank : 4
Schlafli Type : {4,36,4}
Number of vertices, edges, etc : 4, 72, 72, 4
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,18,4}*576d
3-fold quotients : {4,12,4}*384f
4-fold quotients : {4,9,4}*288
6-fold quotients : {4,6,4}*192d
12-fold quotients : {4,3,4}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 13)( 6, 14)( 7, 15)( 8, 16)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)
(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)
(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)
(145,153)(146,154)(147,155)(148,156)(149,157)(150,158)(151,159)(152,160)
(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)
(177,185)(178,186)(179,187)(180,188)(181,189)(182,190)(183,191)(184,192)
(193,201)(194,202)(195,203)(196,204)(197,205)(198,206)(199,207)(200,208)
(209,217)(210,218)(211,219)(212,220)(213,221)(214,222)(215,223)(216,224)
(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)
(241,249)(242,250)(243,251)(244,252)(245,253)(246,254)(247,255)(248,256)
(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)
(273,281)(274,282)(275,283)(276,284)(277,285)(278,286)(279,287)(280,288)
(289,297)(290,298)(291,299)(292,300)(293,301)(294,302)(295,303)(296,304)
(305,313)(306,314)(307,315)(308,316)(309,317)(310,318)(311,319)(312,320)
(321,329)(322,330)(323,331)(324,332)(325,333)(326,334)(327,335)(328,336)
(337,345)(338,346)(339,347)(340,348)(341,349)(342,350)(343,351)(344,352)
(353,361)(354,362)(355,363)(356,364)(357,365)(358,366)(359,367)(360,368)
(369,377)(370,378)(371,379)(372,380)(373,381)(374,382)(375,383)(376,384)
(385,393)(386,394)(387,395)(388,396)(389,397)(390,398)(391,399)(392,400)
(401,409)(402,410)(403,411)(404,412)(405,413)(406,414)(407,415)(408,416)
(417,425)(418,426)(419,427)(420,428)(421,429)(422,430)(423,431)(424,432)
(433,441)(434,442)(435,443)(436,444)(437,445)(438,446)(439,447)(440,448)
(449,457)(450,458)(451,459)(452,460)(453,461)(454,462)(455,463)(456,464)
(465,473)(466,474)(467,475)(468,476)(469,477)(470,478)(471,479)(472,480)
(481,489)(482,490)(483,491)(484,492)(485,493)(486,494)(487,495)(488,496)
(497,505)(498,506)(499,507)(500,508)(501,509)(502,510)(503,511)(504,512)
(513,521)(514,522)(515,523)(516,524)(517,525)(518,526)(519,527)(520,528)
(529,537)(530,538)(531,539)(532,540)(533,541)(534,542)(535,543)(536,544)
(545,553)(546,554)(547,555)(548,556)(549,557)(550,558)(551,559)(552,560)
(561,569)(562,570)(563,571)(564,572)(565,573)(566,574)(567,575)(568,576);;
s1 := ( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)( 50,130)
( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)( 58,142)
( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)( 66,114)
( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)( 74,126)
( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)( 82, 98)
( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)( 90,110)
( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107)(147,148)(151,152)
(153,157)(154,158)(155,160)(156,159)(161,177)(162,178)(163,180)(164,179)
(165,181)(166,182)(167,184)(168,183)(169,189)(170,190)(171,192)(172,191)
(173,185)(174,186)(175,188)(176,187)(193,273)(194,274)(195,276)(196,275)
(197,277)(198,278)(199,280)(200,279)(201,285)(202,286)(203,288)(204,287)
(205,281)(206,282)(207,284)(208,283)(209,257)(210,258)(211,260)(212,259)
(213,261)(214,262)(215,264)(216,263)(217,269)(218,270)(219,272)(220,271)
(221,265)(222,266)(223,268)(224,267)(225,241)(226,242)(227,244)(228,243)
(229,245)(230,246)(231,248)(232,247)(233,253)(234,254)(235,256)(236,255)
(237,249)(238,250)(239,252)(240,251)(289,433)(290,434)(291,436)(292,435)
(293,437)(294,438)(295,440)(296,439)(297,445)(298,446)(299,448)(300,447)
(301,441)(302,442)(303,444)(304,443)(305,465)(306,466)(307,468)(308,467)
(309,469)(310,470)(311,472)(312,471)(313,477)(314,478)(315,480)(316,479)
(317,473)(318,474)(319,476)(320,475)(321,449)(322,450)(323,452)(324,451)
(325,453)(326,454)(327,456)(328,455)(329,461)(330,462)(331,464)(332,463)
(333,457)(334,458)(335,460)(336,459)(337,561)(338,562)(339,564)(340,563)
(341,565)(342,566)(343,568)(344,567)(345,573)(346,574)(347,576)(348,575)
(349,569)(350,570)(351,572)(352,571)(353,545)(354,546)(355,548)(356,547)
(357,549)(358,550)(359,552)(360,551)(361,557)(362,558)(363,560)(364,559)
(365,553)(366,554)(367,556)(368,555)(369,529)(370,530)(371,532)(372,531)
(373,533)(374,534)(375,536)(376,535)(377,541)(378,542)(379,544)(380,543)
(381,537)(382,538)(383,540)(384,539)(385,513)(386,514)(387,516)(388,515)
(389,517)(390,518)(391,520)(392,519)(393,525)(394,526)(395,528)(396,527)
(397,521)(398,522)(399,524)(400,523)(401,497)(402,498)(403,500)(404,499)
(405,501)(406,502)(407,504)(408,503)(409,509)(410,510)(411,512)(412,511)
(413,505)(414,506)(415,508)(416,507)(417,481)(418,482)(419,484)(420,483)
(421,485)(422,486)(423,488)(424,487)(425,493)(426,494)(427,496)(428,495)
(429,489)(430,490)(431,492)(432,491);;
s2 := ( 1,337)( 2,340)( 3,339)( 4,338)( 5,349)( 6,352)( 7,351)( 8,350)
( 9,345)( 10,348)( 11,347)( 12,346)( 13,341)( 14,344)( 15,343)( 16,342)
( 17,369)( 18,372)( 19,371)( 20,370)( 21,381)( 22,384)( 23,383)( 24,382)
( 25,377)( 26,380)( 27,379)( 28,378)( 29,373)( 30,376)( 31,375)( 32,374)
( 33,353)( 34,356)( 35,355)( 36,354)( 37,365)( 38,368)( 39,367)( 40,366)
( 41,361)( 42,364)( 43,363)( 44,362)( 45,357)( 46,360)( 47,359)( 48,358)
( 49,289)( 50,292)( 51,291)( 52,290)( 53,301)( 54,304)( 55,303)( 56,302)
( 57,297)( 58,300)( 59,299)( 60,298)( 61,293)( 62,296)( 63,295)( 64,294)
( 65,321)( 66,324)( 67,323)( 68,322)( 69,333)( 70,336)( 71,335)( 72,334)
( 73,329)( 74,332)( 75,331)( 76,330)( 77,325)( 78,328)( 79,327)( 80,326)
( 81,305)( 82,308)( 83,307)( 84,306)( 85,317)( 86,320)( 87,319)( 88,318)
( 89,313)( 90,316)( 91,315)( 92,314)( 93,309)( 94,312)( 95,311)( 96,310)
( 97,417)( 98,420)( 99,419)(100,418)(101,429)(102,432)(103,431)(104,430)
(105,425)(106,428)(107,427)(108,426)(109,421)(110,424)(111,423)(112,422)
(113,401)(114,404)(115,403)(116,402)(117,413)(118,416)(119,415)(120,414)
(121,409)(122,412)(123,411)(124,410)(125,405)(126,408)(127,407)(128,406)
(129,385)(130,388)(131,387)(132,386)(133,397)(134,400)(135,399)(136,398)
(137,393)(138,396)(139,395)(140,394)(141,389)(142,392)(143,391)(144,390)
(145,481)(146,484)(147,483)(148,482)(149,493)(150,496)(151,495)(152,494)
(153,489)(154,492)(155,491)(156,490)(157,485)(158,488)(159,487)(160,486)
(161,513)(162,516)(163,515)(164,514)(165,525)(166,528)(167,527)(168,526)
(169,521)(170,524)(171,523)(172,522)(173,517)(174,520)(175,519)(176,518)
(177,497)(178,500)(179,499)(180,498)(181,509)(182,512)(183,511)(184,510)
(185,505)(186,508)(187,507)(188,506)(189,501)(190,504)(191,503)(192,502)
(193,433)(194,436)(195,435)(196,434)(197,445)(198,448)(199,447)(200,446)
(201,441)(202,444)(203,443)(204,442)(205,437)(206,440)(207,439)(208,438)
(209,465)(210,468)(211,467)(212,466)(213,477)(214,480)(215,479)(216,478)
(217,473)(218,476)(219,475)(220,474)(221,469)(222,472)(223,471)(224,470)
(225,449)(226,452)(227,451)(228,450)(229,461)(230,464)(231,463)(232,462)
(233,457)(234,460)(235,459)(236,458)(237,453)(238,456)(239,455)(240,454)
(241,561)(242,564)(243,563)(244,562)(245,573)(246,576)(247,575)(248,574)
(249,569)(250,572)(251,571)(252,570)(253,565)(254,568)(255,567)(256,566)
(257,545)(258,548)(259,547)(260,546)(261,557)(262,560)(263,559)(264,558)
(265,553)(266,556)(267,555)(268,554)(269,549)(270,552)(271,551)(272,550)
(273,529)(274,532)(275,531)(276,530)(277,541)(278,544)(279,543)(280,542)
(281,537)(282,540)(283,539)(284,538)(285,533)(286,536)(287,535)(288,534);;
s3 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)
(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)(271,272)
(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)(287,288)
(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)(303,304)
(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)(319,320)
(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)(335,336)
(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)(351,352)
(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)(367,368)
(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)(383,384)
(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)(399,400)
(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)(415,416)
(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)(431,432)
(433,434)(435,436)(437,438)(439,440)(441,442)(443,444)(445,446)(447,448)
(449,450)(451,452)(453,454)(455,456)(457,458)(459,460)(461,462)(463,464)
(465,466)(467,468)(469,470)(471,472)(473,474)(475,476)(477,478)(479,480)
(481,482)(483,484)(485,486)(487,488)(489,490)(491,492)(493,494)(495,496)
(497,498)(499,500)(501,502)(503,504)(505,506)(507,508)(509,510)(511,512)
(513,514)(515,516)(517,518)(519,520)(521,522)(523,524)(525,526)(527,528)
(529,530)(531,532)(533,534)(535,536)(537,538)(539,540)(541,542)(543,544)
(545,546)(547,548)(549,550)(551,552)(553,554)(555,556)(557,558)(559,560)
(561,562)(563,564)(565,566)(567,568)(569,570)(571,572)(573,574)(575,576);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 13)( 6, 14)( 7, 15)
( 8, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)
( 40, 48)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)
( 56, 64)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)
( 72, 80)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)
(104,112)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)
(120,128)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)
(136,144)(145,153)(146,154)(147,155)(148,156)(149,157)(150,158)(151,159)
(152,160)(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)
(168,176)(177,185)(178,186)(179,187)(180,188)(181,189)(182,190)(183,191)
(184,192)(193,201)(194,202)(195,203)(196,204)(197,205)(198,206)(199,207)
(200,208)(209,217)(210,218)(211,219)(212,220)(213,221)(214,222)(215,223)
(216,224)(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)
(232,240)(241,249)(242,250)(243,251)(244,252)(245,253)(246,254)(247,255)
(248,256)(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)
(264,272)(273,281)(274,282)(275,283)(276,284)(277,285)(278,286)(279,287)
(280,288)(289,297)(290,298)(291,299)(292,300)(293,301)(294,302)(295,303)
(296,304)(305,313)(306,314)(307,315)(308,316)(309,317)(310,318)(311,319)
(312,320)(321,329)(322,330)(323,331)(324,332)(325,333)(326,334)(327,335)
(328,336)(337,345)(338,346)(339,347)(340,348)(341,349)(342,350)(343,351)
(344,352)(353,361)(354,362)(355,363)(356,364)(357,365)(358,366)(359,367)
(360,368)(369,377)(370,378)(371,379)(372,380)(373,381)(374,382)(375,383)
(376,384)(385,393)(386,394)(387,395)(388,396)(389,397)(390,398)(391,399)
(392,400)(401,409)(402,410)(403,411)(404,412)(405,413)(406,414)(407,415)
(408,416)(417,425)(418,426)(419,427)(420,428)(421,429)(422,430)(423,431)
(424,432)(433,441)(434,442)(435,443)(436,444)(437,445)(438,446)(439,447)
(440,448)(449,457)(450,458)(451,459)(452,460)(453,461)(454,462)(455,463)
(456,464)(465,473)(466,474)(467,475)(468,476)(469,477)(470,478)(471,479)
(472,480)(481,489)(482,490)(483,491)(484,492)(485,493)(486,494)(487,495)
(488,496)(497,505)(498,506)(499,507)(500,508)(501,509)(502,510)(503,511)
(504,512)(513,521)(514,522)(515,523)(516,524)(517,525)(518,526)(519,527)
(520,528)(529,537)(530,538)(531,539)(532,540)(533,541)(534,542)(535,543)
(536,544)(545,553)(546,554)(547,555)(548,556)(549,557)(550,558)(551,559)
(552,560)(561,569)(562,570)(563,571)(564,572)(565,573)(566,574)(567,575)
(568,576);
s1 := Sym(576)!( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)
( 50,130)( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)
( 58,142)( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)
( 66,114)( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)
( 74,126)( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)
( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)
( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107)(147,148)
(151,152)(153,157)(154,158)(155,160)(156,159)(161,177)(162,178)(163,180)
(164,179)(165,181)(166,182)(167,184)(168,183)(169,189)(170,190)(171,192)
(172,191)(173,185)(174,186)(175,188)(176,187)(193,273)(194,274)(195,276)
(196,275)(197,277)(198,278)(199,280)(200,279)(201,285)(202,286)(203,288)
(204,287)(205,281)(206,282)(207,284)(208,283)(209,257)(210,258)(211,260)
(212,259)(213,261)(214,262)(215,264)(216,263)(217,269)(218,270)(219,272)
(220,271)(221,265)(222,266)(223,268)(224,267)(225,241)(226,242)(227,244)
(228,243)(229,245)(230,246)(231,248)(232,247)(233,253)(234,254)(235,256)
(236,255)(237,249)(238,250)(239,252)(240,251)(289,433)(290,434)(291,436)
(292,435)(293,437)(294,438)(295,440)(296,439)(297,445)(298,446)(299,448)
(300,447)(301,441)(302,442)(303,444)(304,443)(305,465)(306,466)(307,468)
(308,467)(309,469)(310,470)(311,472)(312,471)(313,477)(314,478)(315,480)
(316,479)(317,473)(318,474)(319,476)(320,475)(321,449)(322,450)(323,452)
(324,451)(325,453)(326,454)(327,456)(328,455)(329,461)(330,462)(331,464)
(332,463)(333,457)(334,458)(335,460)(336,459)(337,561)(338,562)(339,564)
(340,563)(341,565)(342,566)(343,568)(344,567)(345,573)(346,574)(347,576)
(348,575)(349,569)(350,570)(351,572)(352,571)(353,545)(354,546)(355,548)
(356,547)(357,549)(358,550)(359,552)(360,551)(361,557)(362,558)(363,560)
(364,559)(365,553)(366,554)(367,556)(368,555)(369,529)(370,530)(371,532)
(372,531)(373,533)(374,534)(375,536)(376,535)(377,541)(378,542)(379,544)
(380,543)(381,537)(382,538)(383,540)(384,539)(385,513)(386,514)(387,516)
(388,515)(389,517)(390,518)(391,520)(392,519)(393,525)(394,526)(395,528)
(396,527)(397,521)(398,522)(399,524)(400,523)(401,497)(402,498)(403,500)
(404,499)(405,501)(406,502)(407,504)(408,503)(409,509)(410,510)(411,512)
(412,511)(413,505)(414,506)(415,508)(416,507)(417,481)(418,482)(419,484)
(420,483)(421,485)(422,486)(423,488)(424,487)(425,493)(426,494)(427,496)
(428,495)(429,489)(430,490)(431,492)(432,491);
s2 := Sym(576)!( 1,337)( 2,340)( 3,339)( 4,338)( 5,349)( 6,352)( 7,351)
( 8,350)( 9,345)( 10,348)( 11,347)( 12,346)( 13,341)( 14,344)( 15,343)
( 16,342)( 17,369)( 18,372)( 19,371)( 20,370)( 21,381)( 22,384)( 23,383)
( 24,382)( 25,377)( 26,380)( 27,379)( 28,378)( 29,373)( 30,376)( 31,375)
( 32,374)( 33,353)( 34,356)( 35,355)( 36,354)( 37,365)( 38,368)( 39,367)
( 40,366)( 41,361)( 42,364)( 43,363)( 44,362)( 45,357)( 46,360)( 47,359)
( 48,358)( 49,289)( 50,292)( 51,291)( 52,290)( 53,301)( 54,304)( 55,303)
( 56,302)( 57,297)( 58,300)( 59,299)( 60,298)( 61,293)( 62,296)( 63,295)
( 64,294)( 65,321)( 66,324)( 67,323)( 68,322)( 69,333)( 70,336)( 71,335)
( 72,334)( 73,329)( 74,332)( 75,331)( 76,330)( 77,325)( 78,328)( 79,327)
( 80,326)( 81,305)( 82,308)( 83,307)( 84,306)( 85,317)( 86,320)( 87,319)
( 88,318)( 89,313)( 90,316)( 91,315)( 92,314)( 93,309)( 94,312)( 95,311)
( 96,310)( 97,417)( 98,420)( 99,419)(100,418)(101,429)(102,432)(103,431)
(104,430)(105,425)(106,428)(107,427)(108,426)(109,421)(110,424)(111,423)
(112,422)(113,401)(114,404)(115,403)(116,402)(117,413)(118,416)(119,415)
(120,414)(121,409)(122,412)(123,411)(124,410)(125,405)(126,408)(127,407)
(128,406)(129,385)(130,388)(131,387)(132,386)(133,397)(134,400)(135,399)
(136,398)(137,393)(138,396)(139,395)(140,394)(141,389)(142,392)(143,391)
(144,390)(145,481)(146,484)(147,483)(148,482)(149,493)(150,496)(151,495)
(152,494)(153,489)(154,492)(155,491)(156,490)(157,485)(158,488)(159,487)
(160,486)(161,513)(162,516)(163,515)(164,514)(165,525)(166,528)(167,527)
(168,526)(169,521)(170,524)(171,523)(172,522)(173,517)(174,520)(175,519)
(176,518)(177,497)(178,500)(179,499)(180,498)(181,509)(182,512)(183,511)
(184,510)(185,505)(186,508)(187,507)(188,506)(189,501)(190,504)(191,503)
(192,502)(193,433)(194,436)(195,435)(196,434)(197,445)(198,448)(199,447)
(200,446)(201,441)(202,444)(203,443)(204,442)(205,437)(206,440)(207,439)
(208,438)(209,465)(210,468)(211,467)(212,466)(213,477)(214,480)(215,479)
(216,478)(217,473)(218,476)(219,475)(220,474)(221,469)(222,472)(223,471)
(224,470)(225,449)(226,452)(227,451)(228,450)(229,461)(230,464)(231,463)
(232,462)(233,457)(234,460)(235,459)(236,458)(237,453)(238,456)(239,455)
(240,454)(241,561)(242,564)(243,563)(244,562)(245,573)(246,576)(247,575)
(248,574)(249,569)(250,572)(251,571)(252,570)(253,565)(254,568)(255,567)
(256,566)(257,545)(258,548)(259,547)(260,546)(261,557)(262,560)(263,559)
(264,558)(265,553)(266,556)(267,555)(268,554)(269,549)(270,552)(271,551)
(272,550)(273,529)(274,532)(275,531)(276,530)(277,541)(278,544)(279,543)
(280,542)(281,537)(282,540)(283,539)(284,538)(285,533)(286,536)(287,535)
(288,534);
s3 := Sym(576)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)
(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)
(271,272)(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)
(287,288)(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)
(303,304)(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)
(319,320)(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)
(335,336)(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)
(351,352)(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)
(367,368)(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)
(383,384)(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)
(399,400)(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)
(415,416)(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)
(431,432)(433,434)(435,436)(437,438)(439,440)(441,442)(443,444)(445,446)
(447,448)(449,450)(451,452)(453,454)(455,456)(457,458)(459,460)(461,462)
(463,464)(465,466)(467,468)(469,470)(471,472)(473,474)(475,476)(477,478)
(479,480)(481,482)(483,484)(485,486)(487,488)(489,490)(491,492)(493,494)
(495,496)(497,498)(499,500)(501,502)(503,504)(505,506)(507,508)(509,510)
(511,512)(513,514)(515,516)(517,518)(519,520)(521,522)(523,524)(525,526)
(527,528)(529,530)(531,532)(533,534)(535,536)(537,538)(539,540)(541,542)
(543,544)(545,546)(547,548)(549,550)(551,552)(553,554)(555,556)(557,558)
(559,560)(561,562)(563,564)(565,566)(567,568)(569,570)(571,572)(573,574)
(575,576);
poly := sub<Sym(576)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope