include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,2}*1152e
if this polytope has a name.
Group : SmallGroup(1152,157549)
Rank : 4
Schlafli Type : {12,12,2}
Number of vertices, edges, etc : 24, 144, 24, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,12,2}*576b
3-fold quotients : {12,4,2}*384b
4-fold quotients : {12,6,2}*288b, {3,12,2}*288
6-fold quotients : {12,4,2}*192b, {12,4,2}*192c, {6,4,2}*192
8-fold quotients : {6,6,2}*144c
12-fold quotients : {12,2,2}*96, {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
16-fold quotients : {3,6,2}*72
24-fold quotients : {3,4,2}*48, {6,2,2}*48
36-fold quotients : {4,2,2}*32
48-fold quotients : {3,2,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 13, 25)( 14, 27)( 15, 26)
( 16, 28)( 17, 33)( 18, 35)( 19, 34)( 20, 36)( 21, 29)( 22, 31)( 23, 30)
( 24, 32)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 61)( 50, 63)
( 51, 62)( 52, 64)( 53, 69)( 54, 71)( 55, 70)( 56, 72)( 57, 65)( 58, 67)
( 59, 66)( 60, 68)( 73,109)( 74,111)( 75,110)( 76,112)( 77,117)( 78,119)
( 79,118)( 80,120)( 81,113)( 82,115)( 83,114)( 84,116)( 85,133)( 86,135)
( 87,134)( 88,136)( 89,141)( 90,143)( 91,142)( 92,144)( 93,137)( 94,139)
( 95,138)( 96,140)( 97,121)( 98,123)( 99,122)(100,124)(101,129)(102,131)
(103,130)(104,132)(105,125)(106,127)(107,126)(108,128);;
s1 := ( 1, 89)( 2, 90)( 3, 92)( 4, 91)( 5, 85)( 6, 86)( 7, 88)( 8, 87)
( 9, 93)( 10, 94)( 11, 96)( 12, 95)( 13, 77)( 14, 78)( 15, 80)( 16, 79)
( 17, 73)( 18, 74)( 19, 76)( 20, 75)( 21, 81)( 22, 82)( 23, 84)( 24, 83)
( 25,101)( 26,102)( 27,104)( 28,103)( 29, 97)( 30, 98)( 31,100)( 32, 99)
( 33,105)( 34,106)( 35,108)( 36,107)( 37,125)( 38,126)( 39,128)( 40,127)
( 41,121)( 42,122)( 43,124)( 44,123)( 45,129)( 46,130)( 47,132)( 48,131)
( 49,113)( 50,114)( 51,116)( 52,115)( 53,109)( 54,110)( 55,112)( 56,111)
( 57,117)( 58,118)( 59,120)( 60,119)( 61,137)( 62,138)( 63,140)( 64,139)
( 65,133)( 66,134)( 67,136)( 68,135)( 69,141)( 70,142)( 71,144)( 72,143);;
s2 := ( 1, 4)( 2, 3)( 5, 12)( 6, 11)( 7, 10)( 8, 9)( 13, 16)( 14, 15)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 25, 28)( 26, 27)( 29, 36)( 30, 35)
( 31, 34)( 32, 33)( 37, 40)( 38, 39)( 41, 48)( 42, 47)( 43, 46)( 44, 45)
( 49, 52)( 50, 51)( 53, 60)( 54, 59)( 55, 58)( 56, 57)( 61, 64)( 62, 63)
( 65, 72)( 66, 71)( 67, 70)( 68, 69)( 73, 76)( 74, 75)( 77, 84)( 78, 83)
( 79, 82)( 80, 81)( 85, 88)( 86, 87)( 89, 96)( 90, 95)( 91, 94)( 92, 93)
( 97,100)( 98, 99)(101,108)(102,107)(103,106)(104,105)(109,112)(110,111)
(113,120)(114,119)(115,118)(116,117)(121,124)(122,123)(125,132)(126,131)
(127,130)(128,129)(133,136)(134,135)(137,144)(138,143)(139,142)(140,141);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(146)!( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 13, 25)( 14, 27)
( 15, 26)( 16, 28)( 17, 33)( 18, 35)( 19, 34)( 20, 36)( 21, 29)( 22, 31)
( 23, 30)( 24, 32)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 61)
( 50, 63)( 51, 62)( 52, 64)( 53, 69)( 54, 71)( 55, 70)( 56, 72)( 57, 65)
( 58, 67)( 59, 66)( 60, 68)( 73,109)( 74,111)( 75,110)( 76,112)( 77,117)
( 78,119)( 79,118)( 80,120)( 81,113)( 82,115)( 83,114)( 84,116)( 85,133)
( 86,135)( 87,134)( 88,136)( 89,141)( 90,143)( 91,142)( 92,144)( 93,137)
( 94,139)( 95,138)( 96,140)( 97,121)( 98,123)( 99,122)(100,124)(101,129)
(102,131)(103,130)(104,132)(105,125)(106,127)(107,126)(108,128);
s1 := Sym(146)!( 1, 89)( 2, 90)( 3, 92)( 4, 91)( 5, 85)( 6, 86)( 7, 88)
( 8, 87)( 9, 93)( 10, 94)( 11, 96)( 12, 95)( 13, 77)( 14, 78)( 15, 80)
( 16, 79)( 17, 73)( 18, 74)( 19, 76)( 20, 75)( 21, 81)( 22, 82)( 23, 84)
( 24, 83)( 25,101)( 26,102)( 27,104)( 28,103)( 29, 97)( 30, 98)( 31,100)
( 32, 99)( 33,105)( 34,106)( 35,108)( 36,107)( 37,125)( 38,126)( 39,128)
( 40,127)( 41,121)( 42,122)( 43,124)( 44,123)( 45,129)( 46,130)( 47,132)
( 48,131)( 49,113)( 50,114)( 51,116)( 52,115)( 53,109)( 54,110)( 55,112)
( 56,111)( 57,117)( 58,118)( 59,120)( 60,119)( 61,137)( 62,138)( 63,140)
( 64,139)( 65,133)( 66,134)( 67,136)( 68,135)( 69,141)( 70,142)( 71,144)
( 72,143);
s2 := Sym(146)!( 1, 4)( 2, 3)( 5, 12)( 6, 11)( 7, 10)( 8, 9)( 13, 16)
( 14, 15)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 25, 28)( 26, 27)( 29, 36)
( 30, 35)( 31, 34)( 32, 33)( 37, 40)( 38, 39)( 41, 48)( 42, 47)( 43, 46)
( 44, 45)( 49, 52)( 50, 51)( 53, 60)( 54, 59)( 55, 58)( 56, 57)( 61, 64)
( 62, 63)( 65, 72)( 66, 71)( 67, 70)( 68, 69)( 73, 76)( 74, 75)( 77, 84)
( 78, 83)( 79, 82)( 80, 81)( 85, 88)( 86, 87)( 89, 96)( 90, 95)( 91, 94)
( 92, 93)( 97,100)( 98, 99)(101,108)(102,107)(103,106)(104,105)(109,112)
(110,111)(113,120)(114,119)(115,118)(116,117)(121,124)(122,123)(125,132)
(126,131)(127,130)(128,129)(133,136)(134,135)(137,144)(138,143)(139,142)
(140,141);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope