include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,12,2}*288
if this polytope has a name.
Group : SmallGroup(288,1028)
Rank : 4
Schlafli Type : {3,12,2}
Number of vertices, edges, etc : 6, 36, 24, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,12,2,2} of size 576
{3,12,2,3} of size 864
{3,12,2,4} of size 1152
{3,12,2,5} of size 1440
{3,12,2,6} of size 1728
Vertex Figure Of :
{2,3,12,2} of size 576
{4,3,12,2} of size 1152
{6,3,12,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,4,2}*96
4-fold quotients : {3,6,2}*72
6-fold quotients : {3,4,2}*48
12-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,24,2}*576, {3,12,4}*576, {6,12,2}*576b
3-fold covers : {9,12,2}*864, {3,12,2}*864, {3,12,6}*864b
4-fold covers : {3,24,2}*1152, {3,12,4}*1152a, {3,12,8}*1152, {3,24,4}*1152, {12,12,2}*1152e, {12,12,2}*1152h, {6,24,2}*1152b, {6,24,2}*1152d, {6,12,4}*1152j, {6,12,2}*1152f, {3,12,2}*1152
5-fold covers : {3,12,10}*1440, {15,12,2}*1440
6-fold covers : {9,24,2}*1728, {3,24,2}*1728, {9,12,4}*1728, {3,12,4}*1728a, {18,12,2}*1728b, {6,12,2}*1728a, {3,24,6}*1728b, {3,12,12}*1728b, {6,12,6}*1728l, {6,12,2}*1728c
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11);;
s2 := ( 1, 2)( 3, 4)( 5,10)( 6, 9)( 7,12)( 8,11);;
s3 := (13,14);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11);
s1 := Sym(14)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11);
s2 := Sym(14)!( 1, 2)( 3, 4)( 5,10)( 6, 9)( 7,12)( 8,11);
s3 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1 >;
to this polytope