Polytope of Type {12,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,2}*1152h
if this polytope has a name.
Group : SmallGroup(1152,157550)
Rank : 4
Schlafli Type : {12,12,2}
Number of vertices, edges, etc : 24, 144, 24, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,12,2}*576b
   3-fold quotients : {12,4,2}*384c
   4-fold quotients : {3,12,2}*288
   6-fold quotients : {6,4,2}*192
   8-fold quotients : {6,6,2}*144c
   12-fold quotients : {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
   16-fold quotients : {3,6,2}*72
   24-fold quotients : {3,4,2}*48, {6,2,2}*48
   48-fold quotients : {3,2,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 25)( 14, 27)( 15, 26)
( 16, 28)( 17, 33)( 18, 35)( 19, 34)( 20, 36)( 21, 29)( 22, 31)( 23, 30)
( 24, 32)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 61)( 50, 63)
( 51, 62)( 52, 64)( 53, 69)( 54, 71)( 55, 70)( 56, 72)( 57, 65)( 58, 67)
( 59, 66)( 60, 68)( 73,109)( 74,111)( 75,110)( 76,112)( 77,117)( 78,119)
( 79,118)( 80,120)( 81,113)( 82,115)( 83,114)( 84,116)( 85,133)( 86,135)
( 87,134)( 88,136)( 89,141)( 90,143)( 91,142)( 92,144)( 93,137)( 94,139)
( 95,138)( 96,140)( 97,121)( 98,123)( 99,122)(100,124)(101,129)(102,131)
(103,130)(104,132)(105,125)(106,127)(107,126)(108,128);;
s1 := (  1, 89)(  2, 90)(  3, 92)(  4, 91)(  5, 85)(  6, 86)(  7, 88)(  8, 87)
(  9, 93)( 10, 94)( 11, 96)( 12, 95)( 13, 77)( 14, 78)( 15, 80)( 16, 79)
( 17, 73)( 18, 74)( 19, 76)( 20, 75)( 21, 81)( 22, 82)( 23, 84)( 24, 83)
( 25,101)( 26,102)( 27,104)( 28,103)( 29, 97)( 30, 98)( 31,100)( 32, 99)
( 33,105)( 34,106)( 35,108)( 36,107)( 37,125)( 38,126)( 39,128)( 40,127)
( 41,121)( 42,122)( 43,124)( 44,123)( 45,129)( 46,130)( 47,132)( 48,131)
( 49,113)( 50,114)( 51,116)( 52,115)( 53,109)( 54,110)( 55,112)( 56,111)
( 57,117)( 58,118)( 59,120)( 60,119)( 61,137)( 62,138)( 63,140)( 64,139)
( 65,133)( 66,134)( 67,136)( 68,135)( 69,141)( 70,142)( 71,144)( 72,143);;
s2 := (  1,  4)(  2,  3)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 13, 16)( 14, 15)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 25, 28)( 26, 27)( 29, 36)( 30, 35)
( 31, 34)( 32, 33)( 37, 40)( 38, 39)( 41, 48)( 42, 47)( 43, 46)( 44, 45)
( 49, 52)( 50, 51)( 53, 60)( 54, 59)( 55, 58)( 56, 57)( 61, 64)( 62, 63)
( 65, 72)( 66, 71)( 67, 70)( 68, 69)( 73,112)( 74,111)( 75,110)( 76,109)
( 77,120)( 78,119)( 79,118)( 80,117)( 81,116)( 82,115)( 83,114)( 84,113)
( 85,124)( 86,123)( 87,122)( 88,121)( 89,132)( 90,131)( 91,130)( 92,129)
( 93,128)( 94,127)( 95,126)( 96,125)( 97,136)( 98,135)( 99,134)(100,133)
(101,144)(102,143)(103,142)(104,141)(105,140)(106,139)(107,138)(108,137);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 25)( 14, 27)
( 15, 26)( 16, 28)( 17, 33)( 18, 35)( 19, 34)( 20, 36)( 21, 29)( 22, 31)
( 23, 30)( 24, 32)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 61)
( 50, 63)( 51, 62)( 52, 64)( 53, 69)( 54, 71)( 55, 70)( 56, 72)( 57, 65)
( 58, 67)( 59, 66)( 60, 68)( 73,109)( 74,111)( 75,110)( 76,112)( 77,117)
( 78,119)( 79,118)( 80,120)( 81,113)( 82,115)( 83,114)( 84,116)( 85,133)
( 86,135)( 87,134)( 88,136)( 89,141)( 90,143)( 91,142)( 92,144)( 93,137)
( 94,139)( 95,138)( 96,140)( 97,121)( 98,123)( 99,122)(100,124)(101,129)
(102,131)(103,130)(104,132)(105,125)(106,127)(107,126)(108,128);
s1 := Sym(146)!(  1, 89)(  2, 90)(  3, 92)(  4, 91)(  5, 85)(  6, 86)(  7, 88)
(  8, 87)(  9, 93)( 10, 94)( 11, 96)( 12, 95)( 13, 77)( 14, 78)( 15, 80)
( 16, 79)( 17, 73)( 18, 74)( 19, 76)( 20, 75)( 21, 81)( 22, 82)( 23, 84)
( 24, 83)( 25,101)( 26,102)( 27,104)( 28,103)( 29, 97)( 30, 98)( 31,100)
( 32, 99)( 33,105)( 34,106)( 35,108)( 36,107)( 37,125)( 38,126)( 39,128)
( 40,127)( 41,121)( 42,122)( 43,124)( 44,123)( 45,129)( 46,130)( 47,132)
( 48,131)( 49,113)( 50,114)( 51,116)( 52,115)( 53,109)( 54,110)( 55,112)
( 56,111)( 57,117)( 58,118)( 59,120)( 60,119)( 61,137)( 62,138)( 63,140)
( 64,139)( 65,133)( 66,134)( 67,136)( 68,135)( 69,141)( 70,142)( 71,144)
( 72,143);
s2 := Sym(146)!(  1,  4)(  2,  3)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 13, 16)
( 14, 15)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 25, 28)( 26, 27)( 29, 36)
( 30, 35)( 31, 34)( 32, 33)( 37, 40)( 38, 39)( 41, 48)( 42, 47)( 43, 46)
( 44, 45)( 49, 52)( 50, 51)( 53, 60)( 54, 59)( 55, 58)( 56, 57)( 61, 64)
( 62, 63)( 65, 72)( 66, 71)( 67, 70)( 68, 69)( 73,112)( 74,111)( 75,110)
( 76,109)( 77,120)( 78,119)( 79,118)( 80,117)( 81,116)( 82,115)( 83,114)
( 84,113)( 85,124)( 86,123)( 87,122)( 88,121)( 89,132)( 90,131)( 91,130)
( 92,129)( 93,128)( 94,127)( 95,126)( 96,125)( 97,136)( 98,135)( 99,134)
(100,133)(101,144)(102,143)(103,142)(104,141)(105,140)(106,139)(107,138)
(108,137);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope