Polytope of Type {9,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,4}*1152
if this polytope has a name.
Group : SmallGroup(1152,157853)
Rank : 3
Schlafli Type : {9,4}
Number of vertices, edges, etc : 144, 288, 64
Order of s0s1s2 : 9
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5,17)( 6,18)( 7,20)( 8,19)( 9,49)(10,50)(11,52)(12,51)(13,33)
(14,34)(15,36)(16,35)(23,24)(25,53)(26,54)(27,56)(28,55)(29,37)(30,38)(31,40)
(32,39)(41,61)(42,62)(43,64)(44,63)(47,48)(59,60);;
s1 := ( 2,33)( 3,49)( 4,17)( 6,37)( 7,53)( 8,21)( 9,13)(10,45)(11,61)(12,29)
(14,41)(15,57)(16,25)(18,36)(19,52)(22,40)(23,56)(26,48)(27,64)(28,32)(30,44)
(31,60)(35,50)(39,54)(42,46)(43,62)(47,58)(59,63);;
s2 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)
(63,64);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(64)!( 3, 4)( 5,17)( 6,18)( 7,20)( 8,19)( 9,49)(10,50)(11,52)(12,51)
(13,33)(14,34)(15,36)(16,35)(23,24)(25,53)(26,54)(27,56)(28,55)(29,37)(30,38)
(31,40)(32,39)(41,61)(42,62)(43,64)(44,63)(47,48)(59,60);
s1 := Sym(64)!( 2,33)( 3,49)( 4,17)( 6,37)( 7,53)( 8,21)( 9,13)(10,45)(11,61)
(12,29)(14,41)(15,57)(16,25)(18,36)(19,52)(22,40)(23,56)(26,48)(27,64)(28,32)
(30,44)(31,60)(35,50)(39,54)(42,46)(43,62)(47,58)(59,63);
s2 := Sym(64)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)
(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)
(63,64);
poly := sub<Sym(64)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2 >; 
 
References : None.
to this polytope