include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {16,36}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,36}*1152a
Also Known As : {16,36|2}. if this polytope has another name.
Group : SmallGroup(1152,32064)
Rank : 3
Schlafli Type : {16,36}
Number of vertices, edges, etc : 16, 288, 36
Order of s0s1s2 : 144
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,36}*576a, {16,18}*576
3-fold quotients : {16,12}*384a
4-fold quotients : {4,36}*288a, {8,18}*288
6-fold quotients : {8,12}*192a, {16,6}*192
8-fold quotients : {2,36}*144, {4,18}*144a
9-fold quotients : {16,4}*128a
12-fold quotients : {4,12}*96a, {8,6}*96
16-fold quotients : {2,18}*72
18-fold quotients : {8,4}*64a, {16,2}*64
24-fold quotients : {2,12}*48, {4,6}*48a
32-fold quotients : {2,9}*36
36-fold quotients : {4,4}*32, {8,2}*32
48-fold quotients : {2,6}*24
72-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {2,3}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,289)( 2,290)( 3,291)( 4,292)( 5,293)( 6,294)( 7,295)( 8,296)
( 9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)( 16,304)
( 17,305)( 18,306)( 19,316)( 20,317)( 21,318)( 22,319)( 23,320)( 24,321)
( 25,322)( 26,323)( 27,324)( 28,307)( 29,308)( 30,309)( 31,310)( 32,311)
( 33,312)( 34,313)( 35,314)( 36,315)( 37,325)( 38,326)( 39,327)( 40,328)
( 41,329)( 42,330)( 43,331)( 44,332)( 45,333)( 46,334)( 47,335)( 48,336)
( 49,337)( 50,338)( 51,339)( 52,340)( 53,341)( 54,342)( 55,352)( 56,353)
( 57,354)( 58,355)( 59,356)( 60,357)( 61,358)( 62,359)( 63,360)( 64,343)
( 65,344)( 66,345)( 67,346)( 68,347)( 69,348)( 70,349)( 71,350)( 72,351)
( 73,379)( 74,380)( 75,381)( 76,382)( 77,383)( 78,384)( 79,385)( 80,386)
( 81,387)( 82,388)( 83,389)( 84,390)( 85,391)( 86,392)( 87,393)( 88,394)
( 89,395)( 90,396)( 91,361)( 92,362)( 93,363)( 94,364)( 95,365)( 96,366)
( 97,367)( 98,368)( 99,369)(100,370)(101,371)(102,372)(103,373)(104,374)
(105,375)(106,376)(107,377)(108,378)(109,415)(110,416)(111,417)(112,418)
(113,419)(114,420)(115,421)(116,422)(117,423)(118,424)(119,425)(120,426)
(121,427)(122,428)(123,429)(124,430)(125,431)(126,432)(127,397)(128,398)
(129,399)(130,400)(131,401)(132,402)(133,403)(134,404)(135,405)(136,406)
(137,407)(138,408)(139,409)(140,410)(141,411)(142,412)(143,413)(144,414)
(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)(152,440)
(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)(160,448)
(161,449)(162,450)(163,460)(164,461)(165,462)(166,463)(167,464)(168,465)
(169,466)(170,467)(171,468)(172,451)(173,452)(174,453)(175,454)(176,455)
(177,456)(178,457)(179,458)(180,459)(181,469)(182,470)(183,471)(184,472)
(185,473)(186,474)(187,475)(188,476)(189,477)(190,478)(191,479)(192,480)
(193,481)(194,482)(195,483)(196,484)(197,485)(198,486)(199,496)(200,497)
(201,498)(202,499)(203,500)(204,501)(205,502)(206,503)(207,504)(208,487)
(209,488)(210,489)(211,490)(212,491)(213,492)(214,493)(215,494)(216,495)
(217,523)(218,524)(219,525)(220,526)(221,527)(222,528)(223,529)(224,530)
(225,531)(226,532)(227,533)(228,534)(229,535)(230,536)(231,537)(232,538)
(233,539)(234,540)(235,505)(236,506)(237,507)(238,508)(239,509)(240,510)
(241,511)(242,512)(243,513)(244,514)(245,515)(246,516)(247,517)(248,518)
(249,519)(250,520)(251,521)(252,522)(253,559)(254,560)(255,561)(256,562)
(257,563)(258,564)(259,565)(260,566)(261,567)(262,568)(263,569)(264,570)
(265,571)(266,572)(267,573)(268,574)(269,575)(270,576)(271,541)(272,542)
(273,543)(274,544)(275,545)(276,546)(277,547)(278,548)(279,549)(280,550)
(281,551)(282,552)(283,553)(284,554)(285,555)(286,556)(287,557)(288,558);;
s1 := ( 2, 3)( 4, 9)( 5, 8)( 6, 7)( 11, 12)( 13, 18)( 14, 17)( 15, 16)
( 19, 28)( 20, 30)( 21, 29)( 22, 36)( 23, 35)( 24, 34)( 25, 33)( 26, 32)
( 27, 31)( 38, 39)( 40, 45)( 41, 44)( 42, 43)( 47, 48)( 49, 54)( 50, 53)
( 51, 52)( 55, 64)( 56, 66)( 57, 65)( 58, 72)( 59, 71)( 60, 70)( 61, 69)
( 62, 68)( 63, 67)( 73, 91)( 74, 93)( 75, 92)( 76, 99)( 77, 98)( 78, 97)
( 79, 96)( 80, 95)( 81, 94)( 82,100)( 83,102)( 84,101)( 85,108)( 86,107)
( 87,106)( 88,105)( 89,104)( 90,103)(109,127)(110,129)(111,128)(112,135)
(113,134)(114,133)(115,132)(116,131)(117,130)(118,136)(119,138)(120,137)
(121,144)(122,143)(123,142)(124,141)(125,140)(126,139)(145,181)(146,183)
(147,182)(148,189)(149,188)(150,187)(151,186)(152,185)(153,184)(154,190)
(155,192)(156,191)(157,198)(158,197)(159,196)(160,195)(161,194)(162,193)
(163,208)(164,210)(165,209)(166,216)(167,215)(168,214)(169,213)(170,212)
(171,211)(172,199)(173,201)(174,200)(175,207)(176,206)(177,205)(178,204)
(179,203)(180,202)(217,271)(218,273)(219,272)(220,279)(221,278)(222,277)
(223,276)(224,275)(225,274)(226,280)(227,282)(228,281)(229,288)(230,287)
(231,286)(232,285)(233,284)(234,283)(235,253)(236,255)(237,254)(238,261)
(239,260)(240,259)(241,258)(242,257)(243,256)(244,262)(245,264)(246,263)
(247,270)(248,269)(249,268)(250,267)(251,266)(252,265)(289,361)(290,363)
(291,362)(292,369)(293,368)(294,367)(295,366)(296,365)(297,364)(298,370)
(299,372)(300,371)(301,378)(302,377)(303,376)(304,375)(305,374)(306,373)
(307,388)(308,390)(309,389)(310,396)(311,395)(312,394)(313,393)(314,392)
(315,391)(316,379)(317,381)(318,380)(319,387)(320,386)(321,385)(322,384)
(323,383)(324,382)(325,397)(326,399)(327,398)(328,405)(329,404)(330,403)
(331,402)(332,401)(333,400)(334,406)(335,408)(336,407)(337,414)(338,413)
(339,412)(340,411)(341,410)(342,409)(343,424)(344,426)(345,425)(346,432)
(347,431)(348,430)(349,429)(350,428)(351,427)(352,415)(353,417)(354,416)
(355,423)(356,422)(357,421)(358,420)(359,419)(360,418)(433,541)(434,543)
(435,542)(436,549)(437,548)(438,547)(439,546)(440,545)(441,544)(442,550)
(443,552)(444,551)(445,558)(446,557)(447,556)(448,555)(449,554)(450,553)
(451,568)(452,570)(453,569)(454,576)(455,575)(456,574)(457,573)(458,572)
(459,571)(460,559)(461,561)(462,560)(463,567)(464,566)(465,565)(466,564)
(467,563)(468,562)(469,505)(470,507)(471,506)(472,513)(473,512)(474,511)
(475,510)(476,509)(477,508)(478,514)(479,516)(480,515)(481,522)(482,521)
(483,520)(484,519)(485,518)(486,517)(487,532)(488,534)(489,533)(490,540)
(491,539)(492,538)(493,537)(494,536)(495,535)(496,523)(497,525)(498,524)
(499,531)(500,530)(501,529)(502,528)(503,527)(504,526);;
s2 := ( 1,148)( 2,150)( 3,149)( 4,145)( 5,147)( 6,146)( 7,153)( 8,152)
( 9,151)( 10,157)( 11,159)( 12,158)( 13,154)( 14,156)( 15,155)( 16,162)
( 17,161)( 18,160)( 19,166)( 20,168)( 21,167)( 22,163)( 23,165)( 24,164)
( 25,171)( 26,170)( 27,169)( 28,175)( 29,177)( 30,176)( 31,172)( 32,174)
( 33,173)( 34,180)( 35,179)( 36,178)( 37,184)( 38,186)( 39,185)( 40,181)
( 41,183)( 42,182)( 43,189)( 44,188)( 45,187)( 46,193)( 47,195)( 48,194)
( 49,190)( 50,192)( 51,191)( 52,198)( 53,197)( 54,196)( 55,202)( 56,204)
( 57,203)( 58,199)( 59,201)( 60,200)( 61,207)( 62,206)( 63,205)( 64,211)
( 65,213)( 66,212)( 67,208)( 68,210)( 69,209)( 70,216)( 71,215)( 72,214)
( 73,220)( 74,222)( 75,221)( 76,217)( 77,219)( 78,218)( 79,225)( 80,224)
( 81,223)( 82,229)( 83,231)( 84,230)( 85,226)( 86,228)( 87,227)( 88,234)
( 89,233)( 90,232)( 91,238)( 92,240)( 93,239)( 94,235)( 95,237)( 96,236)
( 97,243)( 98,242)( 99,241)(100,247)(101,249)(102,248)(103,244)(104,246)
(105,245)(106,252)(107,251)(108,250)(109,256)(110,258)(111,257)(112,253)
(113,255)(114,254)(115,261)(116,260)(117,259)(118,265)(119,267)(120,266)
(121,262)(122,264)(123,263)(124,270)(125,269)(126,268)(127,274)(128,276)
(129,275)(130,271)(131,273)(132,272)(133,279)(134,278)(135,277)(136,283)
(137,285)(138,284)(139,280)(140,282)(141,281)(142,288)(143,287)(144,286)
(289,436)(290,438)(291,437)(292,433)(293,435)(294,434)(295,441)(296,440)
(297,439)(298,445)(299,447)(300,446)(301,442)(302,444)(303,443)(304,450)
(305,449)(306,448)(307,454)(308,456)(309,455)(310,451)(311,453)(312,452)
(313,459)(314,458)(315,457)(316,463)(317,465)(318,464)(319,460)(320,462)
(321,461)(322,468)(323,467)(324,466)(325,472)(326,474)(327,473)(328,469)
(329,471)(330,470)(331,477)(332,476)(333,475)(334,481)(335,483)(336,482)
(337,478)(338,480)(339,479)(340,486)(341,485)(342,484)(343,490)(344,492)
(345,491)(346,487)(347,489)(348,488)(349,495)(350,494)(351,493)(352,499)
(353,501)(354,500)(355,496)(356,498)(357,497)(358,504)(359,503)(360,502)
(361,508)(362,510)(363,509)(364,505)(365,507)(366,506)(367,513)(368,512)
(369,511)(370,517)(371,519)(372,518)(373,514)(374,516)(375,515)(376,522)
(377,521)(378,520)(379,526)(380,528)(381,527)(382,523)(383,525)(384,524)
(385,531)(386,530)(387,529)(388,535)(389,537)(390,536)(391,532)(392,534)
(393,533)(394,540)(395,539)(396,538)(397,544)(398,546)(399,545)(400,541)
(401,543)(402,542)(403,549)(404,548)(405,547)(406,553)(407,555)(408,554)
(409,550)(410,552)(411,551)(412,558)(413,557)(414,556)(415,562)(416,564)
(417,563)(418,559)(419,561)(420,560)(421,567)(422,566)(423,565)(424,571)
(425,573)(426,572)(427,568)(428,570)(429,569)(430,576)(431,575)(432,574);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1,289)( 2,290)( 3,291)( 4,292)( 5,293)( 6,294)( 7,295)
( 8,296)( 9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)
( 16,304)( 17,305)( 18,306)( 19,316)( 20,317)( 21,318)( 22,319)( 23,320)
( 24,321)( 25,322)( 26,323)( 27,324)( 28,307)( 29,308)( 30,309)( 31,310)
( 32,311)( 33,312)( 34,313)( 35,314)( 36,315)( 37,325)( 38,326)( 39,327)
( 40,328)( 41,329)( 42,330)( 43,331)( 44,332)( 45,333)( 46,334)( 47,335)
( 48,336)( 49,337)( 50,338)( 51,339)( 52,340)( 53,341)( 54,342)( 55,352)
( 56,353)( 57,354)( 58,355)( 59,356)( 60,357)( 61,358)( 62,359)( 63,360)
( 64,343)( 65,344)( 66,345)( 67,346)( 68,347)( 69,348)( 70,349)( 71,350)
( 72,351)( 73,379)( 74,380)( 75,381)( 76,382)( 77,383)( 78,384)( 79,385)
( 80,386)( 81,387)( 82,388)( 83,389)( 84,390)( 85,391)( 86,392)( 87,393)
( 88,394)( 89,395)( 90,396)( 91,361)( 92,362)( 93,363)( 94,364)( 95,365)
( 96,366)( 97,367)( 98,368)( 99,369)(100,370)(101,371)(102,372)(103,373)
(104,374)(105,375)(106,376)(107,377)(108,378)(109,415)(110,416)(111,417)
(112,418)(113,419)(114,420)(115,421)(116,422)(117,423)(118,424)(119,425)
(120,426)(121,427)(122,428)(123,429)(124,430)(125,431)(126,432)(127,397)
(128,398)(129,399)(130,400)(131,401)(132,402)(133,403)(134,404)(135,405)
(136,406)(137,407)(138,408)(139,409)(140,410)(141,411)(142,412)(143,413)
(144,414)(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)
(152,440)(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)
(160,448)(161,449)(162,450)(163,460)(164,461)(165,462)(166,463)(167,464)
(168,465)(169,466)(170,467)(171,468)(172,451)(173,452)(174,453)(175,454)
(176,455)(177,456)(178,457)(179,458)(180,459)(181,469)(182,470)(183,471)
(184,472)(185,473)(186,474)(187,475)(188,476)(189,477)(190,478)(191,479)
(192,480)(193,481)(194,482)(195,483)(196,484)(197,485)(198,486)(199,496)
(200,497)(201,498)(202,499)(203,500)(204,501)(205,502)(206,503)(207,504)
(208,487)(209,488)(210,489)(211,490)(212,491)(213,492)(214,493)(215,494)
(216,495)(217,523)(218,524)(219,525)(220,526)(221,527)(222,528)(223,529)
(224,530)(225,531)(226,532)(227,533)(228,534)(229,535)(230,536)(231,537)
(232,538)(233,539)(234,540)(235,505)(236,506)(237,507)(238,508)(239,509)
(240,510)(241,511)(242,512)(243,513)(244,514)(245,515)(246,516)(247,517)
(248,518)(249,519)(250,520)(251,521)(252,522)(253,559)(254,560)(255,561)
(256,562)(257,563)(258,564)(259,565)(260,566)(261,567)(262,568)(263,569)
(264,570)(265,571)(266,572)(267,573)(268,574)(269,575)(270,576)(271,541)
(272,542)(273,543)(274,544)(275,545)(276,546)(277,547)(278,548)(279,549)
(280,550)(281,551)(282,552)(283,553)(284,554)(285,555)(286,556)(287,557)
(288,558);
s1 := Sym(576)!( 2, 3)( 4, 9)( 5, 8)( 6, 7)( 11, 12)( 13, 18)( 14, 17)
( 15, 16)( 19, 28)( 20, 30)( 21, 29)( 22, 36)( 23, 35)( 24, 34)( 25, 33)
( 26, 32)( 27, 31)( 38, 39)( 40, 45)( 41, 44)( 42, 43)( 47, 48)( 49, 54)
( 50, 53)( 51, 52)( 55, 64)( 56, 66)( 57, 65)( 58, 72)( 59, 71)( 60, 70)
( 61, 69)( 62, 68)( 63, 67)( 73, 91)( 74, 93)( 75, 92)( 76, 99)( 77, 98)
( 78, 97)( 79, 96)( 80, 95)( 81, 94)( 82,100)( 83,102)( 84,101)( 85,108)
( 86,107)( 87,106)( 88,105)( 89,104)( 90,103)(109,127)(110,129)(111,128)
(112,135)(113,134)(114,133)(115,132)(116,131)(117,130)(118,136)(119,138)
(120,137)(121,144)(122,143)(123,142)(124,141)(125,140)(126,139)(145,181)
(146,183)(147,182)(148,189)(149,188)(150,187)(151,186)(152,185)(153,184)
(154,190)(155,192)(156,191)(157,198)(158,197)(159,196)(160,195)(161,194)
(162,193)(163,208)(164,210)(165,209)(166,216)(167,215)(168,214)(169,213)
(170,212)(171,211)(172,199)(173,201)(174,200)(175,207)(176,206)(177,205)
(178,204)(179,203)(180,202)(217,271)(218,273)(219,272)(220,279)(221,278)
(222,277)(223,276)(224,275)(225,274)(226,280)(227,282)(228,281)(229,288)
(230,287)(231,286)(232,285)(233,284)(234,283)(235,253)(236,255)(237,254)
(238,261)(239,260)(240,259)(241,258)(242,257)(243,256)(244,262)(245,264)
(246,263)(247,270)(248,269)(249,268)(250,267)(251,266)(252,265)(289,361)
(290,363)(291,362)(292,369)(293,368)(294,367)(295,366)(296,365)(297,364)
(298,370)(299,372)(300,371)(301,378)(302,377)(303,376)(304,375)(305,374)
(306,373)(307,388)(308,390)(309,389)(310,396)(311,395)(312,394)(313,393)
(314,392)(315,391)(316,379)(317,381)(318,380)(319,387)(320,386)(321,385)
(322,384)(323,383)(324,382)(325,397)(326,399)(327,398)(328,405)(329,404)
(330,403)(331,402)(332,401)(333,400)(334,406)(335,408)(336,407)(337,414)
(338,413)(339,412)(340,411)(341,410)(342,409)(343,424)(344,426)(345,425)
(346,432)(347,431)(348,430)(349,429)(350,428)(351,427)(352,415)(353,417)
(354,416)(355,423)(356,422)(357,421)(358,420)(359,419)(360,418)(433,541)
(434,543)(435,542)(436,549)(437,548)(438,547)(439,546)(440,545)(441,544)
(442,550)(443,552)(444,551)(445,558)(446,557)(447,556)(448,555)(449,554)
(450,553)(451,568)(452,570)(453,569)(454,576)(455,575)(456,574)(457,573)
(458,572)(459,571)(460,559)(461,561)(462,560)(463,567)(464,566)(465,565)
(466,564)(467,563)(468,562)(469,505)(470,507)(471,506)(472,513)(473,512)
(474,511)(475,510)(476,509)(477,508)(478,514)(479,516)(480,515)(481,522)
(482,521)(483,520)(484,519)(485,518)(486,517)(487,532)(488,534)(489,533)
(490,540)(491,539)(492,538)(493,537)(494,536)(495,535)(496,523)(497,525)
(498,524)(499,531)(500,530)(501,529)(502,528)(503,527)(504,526);
s2 := Sym(576)!( 1,148)( 2,150)( 3,149)( 4,145)( 5,147)( 6,146)( 7,153)
( 8,152)( 9,151)( 10,157)( 11,159)( 12,158)( 13,154)( 14,156)( 15,155)
( 16,162)( 17,161)( 18,160)( 19,166)( 20,168)( 21,167)( 22,163)( 23,165)
( 24,164)( 25,171)( 26,170)( 27,169)( 28,175)( 29,177)( 30,176)( 31,172)
( 32,174)( 33,173)( 34,180)( 35,179)( 36,178)( 37,184)( 38,186)( 39,185)
( 40,181)( 41,183)( 42,182)( 43,189)( 44,188)( 45,187)( 46,193)( 47,195)
( 48,194)( 49,190)( 50,192)( 51,191)( 52,198)( 53,197)( 54,196)( 55,202)
( 56,204)( 57,203)( 58,199)( 59,201)( 60,200)( 61,207)( 62,206)( 63,205)
( 64,211)( 65,213)( 66,212)( 67,208)( 68,210)( 69,209)( 70,216)( 71,215)
( 72,214)( 73,220)( 74,222)( 75,221)( 76,217)( 77,219)( 78,218)( 79,225)
( 80,224)( 81,223)( 82,229)( 83,231)( 84,230)( 85,226)( 86,228)( 87,227)
( 88,234)( 89,233)( 90,232)( 91,238)( 92,240)( 93,239)( 94,235)( 95,237)
( 96,236)( 97,243)( 98,242)( 99,241)(100,247)(101,249)(102,248)(103,244)
(104,246)(105,245)(106,252)(107,251)(108,250)(109,256)(110,258)(111,257)
(112,253)(113,255)(114,254)(115,261)(116,260)(117,259)(118,265)(119,267)
(120,266)(121,262)(122,264)(123,263)(124,270)(125,269)(126,268)(127,274)
(128,276)(129,275)(130,271)(131,273)(132,272)(133,279)(134,278)(135,277)
(136,283)(137,285)(138,284)(139,280)(140,282)(141,281)(142,288)(143,287)
(144,286)(289,436)(290,438)(291,437)(292,433)(293,435)(294,434)(295,441)
(296,440)(297,439)(298,445)(299,447)(300,446)(301,442)(302,444)(303,443)
(304,450)(305,449)(306,448)(307,454)(308,456)(309,455)(310,451)(311,453)
(312,452)(313,459)(314,458)(315,457)(316,463)(317,465)(318,464)(319,460)
(320,462)(321,461)(322,468)(323,467)(324,466)(325,472)(326,474)(327,473)
(328,469)(329,471)(330,470)(331,477)(332,476)(333,475)(334,481)(335,483)
(336,482)(337,478)(338,480)(339,479)(340,486)(341,485)(342,484)(343,490)
(344,492)(345,491)(346,487)(347,489)(348,488)(349,495)(350,494)(351,493)
(352,499)(353,501)(354,500)(355,496)(356,498)(357,497)(358,504)(359,503)
(360,502)(361,508)(362,510)(363,509)(364,505)(365,507)(366,506)(367,513)
(368,512)(369,511)(370,517)(371,519)(372,518)(373,514)(374,516)(375,515)
(376,522)(377,521)(378,520)(379,526)(380,528)(381,527)(382,523)(383,525)
(384,524)(385,531)(386,530)(387,529)(388,535)(389,537)(390,536)(391,532)
(392,534)(393,533)(394,540)(395,539)(396,538)(397,544)(398,546)(399,545)
(400,541)(401,543)(402,542)(403,549)(404,548)(405,547)(406,553)(407,555)
(408,554)(409,550)(410,552)(411,551)(412,558)(413,557)(414,556)(415,562)
(416,564)(417,563)(418,559)(419,561)(420,560)(421,567)(422,566)(423,565)
(424,571)(425,573)(426,572)(427,568)(428,570)(429,569)(430,576)(431,575)
(432,574);
poly := sub<Sym(576)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope