Polytope of Type {16,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,4}*1152a
if this polytope has a name.
Group : SmallGroup(1152,32083)
Rank : 3
Schlafli Type : {16,4}
Number of vertices, edges, etc : 144, 288, 36
Order of s0s1s2 : 48
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,4}*576a
   4-fold quotients : {4,4}*288
   8-fold quotients : {4,4}*144
   9-fold quotients : {16,4}*128a
   16-fold quotients : {4,4}*72
   18-fold quotients : {8,4}*64a, {16,2}*64
   36-fold quotients : {4,4}*32, {8,2}*32
   72-fold quotients : {2,4}*16, {4,2}*16
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,433)(  2,435)(  3,434)(  4,437)(  5,436)(  6,438)(  7,441)(  8,440)
(  9,439)( 10,442)( 11,444)( 12,443)( 13,446)( 14,445)( 15,447)( 16,450)
( 17,449)( 18,448)( 19,460)( 20,462)( 21,461)( 22,464)( 23,463)( 24,465)
( 25,468)( 26,467)( 27,466)( 28,451)( 29,453)( 30,452)( 31,455)( 32,454)
( 33,456)( 34,459)( 35,458)( 36,457)( 37,469)( 38,471)( 39,470)( 40,473)
( 41,472)( 42,474)( 43,477)( 44,476)( 45,475)( 46,478)( 47,480)( 48,479)
( 49,482)( 50,481)( 51,483)( 52,486)( 53,485)( 54,484)( 55,496)( 56,498)
( 57,497)( 58,500)( 59,499)( 60,501)( 61,504)( 62,503)( 63,502)( 64,487)
( 65,489)( 66,488)( 67,491)( 68,490)( 69,492)( 70,495)( 71,494)( 72,493)
( 73,523)( 74,525)( 75,524)( 76,527)( 77,526)( 78,528)( 79,531)( 80,530)
( 81,529)( 82,532)( 83,534)( 84,533)( 85,536)( 86,535)( 87,537)( 88,540)
( 89,539)( 90,538)( 91,505)( 92,507)( 93,506)( 94,509)( 95,508)( 96,510)
( 97,513)( 98,512)( 99,511)(100,514)(101,516)(102,515)(103,518)(104,517)
(105,519)(106,522)(107,521)(108,520)(109,559)(110,561)(111,560)(112,563)
(113,562)(114,564)(115,567)(116,566)(117,565)(118,568)(119,570)(120,569)
(121,572)(122,571)(123,573)(124,576)(125,575)(126,574)(127,541)(128,543)
(129,542)(130,545)(131,544)(132,546)(133,549)(134,548)(135,547)(136,550)
(137,552)(138,551)(139,554)(140,553)(141,555)(142,558)(143,557)(144,556)
(145,289)(146,291)(147,290)(148,293)(149,292)(150,294)(151,297)(152,296)
(153,295)(154,298)(155,300)(156,299)(157,302)(158,301)(159,303)(160,306)
(161,305)(162,304)(163,316)(164,318)(165,317)(166,320)(167,319)(168,321)
(169,324)(170,323)(171,322)(172,307)(173,309)(174,308)(175,311)(176,310)
(177,312)(178,315)(179,314)(180,313)(181,325)(182,327)(183,326)(184,329)
(185,328)(186,330)(187,333)(188,332)(189,331)(190,334)(191,336)(192,335)
(193,338)(194,337)(195,339)(196,342)(197,341)(198,340)(199,352)(200,354)
(201,353)(202,356)(203,355)(204,357)(205,360)(206,359)(207,358)(208,343)
(209,345)(210,344)(211,347)(212,346)(213,348)(214,351)(215,350)(216,349)
(217,379)(218,381)(219,380)(220,383)(221,382)(222,384)(223,387)(224,386)
(225,385)(226,388)(227,390)(228,389)(229,392)(230,391)(231,393)(232,396)
(233,395)(234,394)(235,361)(236,363)(237,362)(238,365)(239,364)(240,366)
(241,369)(242,368)(243,367)(244,370)(245,372)(246,371)(247,374)(248,373)
(249,375)(250,378)(251,377)(252,376)(253,415)(254,417)(255,416)(256,419)
(257,418)(258,420)(259,423)(260,422)(261,421)(262,424)(263,426)(264,425)
(265,428)(266,427)(267,429)(268,432)(269,431)(270,430)(271,397)(272,399)
(273,398)(274,401)(275,400)(276,402)(277,405)(278,404)(279,403)(280,406)
(281,408)(282,407)(283,410)(284,409)(285,411)(286,414)(287,413)(288,412);;
s1 := (  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 19, 28)( 20, 33)
( 21, 35)( 22, 31)( 23, 36)( 24, 29)( 25, 34)( 26, 30)( 27, 32)( 38, 42)
( 39, 44)( 41, 45)( 47, 51)( 48, 53)( 50, 54)( 55, 64)( 56, 69)( 57, 71)
( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73, 91)( 74, 96)
( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)( 81, 95)( 82,100)
( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)( 89,102)( 90,104)
(109,127)(110,132)(111,134)(112,130)(113,135)(114,128)(115,133)(116,129)
(117,131)(118,136)(119,141)(120,143)(121,139)(122,144)(123,137)(124,142)
(125,138)(126,140)(145,181)(146,186)(147,188)(148,184)(149,189)(150,182)
(151,187)(152,183)(153,185)(154,190)(155,195)(156,197)(157,193)(158,198)
(159,191)(160,196)(161,192)(162,194)(163,208)(164,213)(165,215)(166,211)
(167,216)(168,209)(169,214)(170,210)(171,212)(172,199)(173,204)(174,206)
(175,202)(176,207)(177,200)(178,205)(179,201)(180,203)(217,271)(218,276)
(219,278)(220,274)(221,279)(222,272)(223,277)(224,273)(225,275)(226,280)
(227,285)(228,287)(229,283)(230,288)(231,281)(232,286)(233,282)(234,284)
(235,253)(236,258)(237,260)(238,256)(239,261)(240,254)(241,259)(242,255)
(243,257)(244,262)(245,267)(246,269)(247,265)(248,270)(249,263)(250,268)
(251,264)(252,266)(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)
(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)
(303,371)(304,376)(305,372)(306,374)(307,388)(308,393)(309,395)(310,391)
(311,396)(312,389)(313,394)(314,390)(315,392)(316,379)(317,384)(318,386)
(319,382)(320,387)(321,380)(322,385)(323,381)(324,383)(325,397)(326,402)
(327,404)(328,400)(329,405)(330,398)(331,403)(332,399)(333,401)(334,406)
(335,411)(336,413)(337,409)(338,414)(339,407)(340,412)(341,408)(342,410)
(343,424)(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)(350,426)
(351,428)(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)(358,421)
(359,417)(360,419)(433,541)(434,546)(435,548)(436,544)(437,549)(438,542)
(439,547)(440,543)(441,545)(442,550)(443,555)(444,557)(445,553)(446,558)
(447,551)(448,556)(449,552)(450,554)(451,568)(452,573)(453,575)(454,571)
(455,576)(456,569)(457,574)(458,570)(459,572)(460,559)(461,564)(462,566)
(463,562)(464,567)(465,560)(466,565)(467,561)(468,563)(469,505)(470,510)
(471,512)(472,508)(473,513)(474,506)(475,511)(476,507)(477,509)(478,514)
(479,519)(480,521)(481,517)(482,522)(483,515)(484,520)(485,516)(486,518)
(487,532)(488,537)(489,539)(490,535)(491,540)(492,533)(493,538)(494,534)
(495,536)(496,523)(497,528)(498,530)(499,526)(500,531)(501,524)(502,529)
(503,525)(504,527);;
s2 := (  1,188)(  2,189)(  3,187)(  4,184)(  5,185)(  6,186)(  7,183)(  8,181)
(  9,182)( 10,197)( 11,198)( 12,196)( 13,193)( 14,194)( 15,195)( 16,192)
( 17,190)( 18,191)( 19,206)( 20,207)( 21,205)( 22,202)( 23,203)( 24,204)
( 25,201)( 26,199)( 27,200)( 28,215)( 29,216)( 30,214)( 31,211)( 32,212)
( 33,213)( 34,210)( 35,208)( 36,209)( 37,152)( 38,153)( 39,151)( 40,148)
( 41,149)( 42,150)( 43,147)( 44,145)( 45,146)( 46,161)( 47,162)( 48,160)
( 49,157)( 50,158)( 51,159)( 52,156)( 53,154)( 54,155)( 55,170)( 56,171)
( 57,169)( 58,166)( 59,167)( 60,168)( 61,165)( 62,163)( 63,164)( 64,179)
( 65,180)( 66,178)( 67,175)( 68,176)( 69,177)( 70,174)( 71,172)( 72,173)
( 73,260)( 74,261)( 75,259)( 76,256)( 77,257)( 78,258)( 79,255)( 80,253)
( 81,254)( 82,269)( 83,270)( 84,268)( 85,265)( 86,266)( 87,267)( 88,264)
( 89,262)( 90,263)( 91,278)( 92,279)( 93,277)( 94,274)( 95,275)( 96,276)
( 97,273)( 98,271)( 99,272)(100,287)(101,288)(102,286)(103,283)(104,284)
(105,285)(106,282)(107,280)(108,281)(109,224)(110,225)(111,223)(112,220)
(113,221)(114,222)(115,219)(116,217)(117,218)(118,233)(119,234)(120,232)
(121,229)(122,230)(123,231)(124,228)(125,226)(126,227)(127,242)(128,243)
(129,241)(130,238)(131,239)(132,240)(133,237)(134,235)(135,236)(136,251)
(137,252)(138,250)(139,247)(140,248)(141,249)(142,246)(143,244)(144,245)
(289,476)(290,477)(291,475)(292,472)(293,473)(294,474)(295,471)(296,469)
(297,470)(298,485)(299,486)(300,484)(301,481)(302,482)(303,483)(304,480)
(305,478)(306,479)(307,494)(308,495)(309,493)(310,490)(311,491)(312,492)
(313,489)(314,487)(315,488)(316,503)(317,504)(318,502)(319,499)(320,500)
(321,501)(322,498)(323,496)(324,497)(325,440)(326,441)(327,439)(328,436)
(329,437)(330,438)(331,435)(332,433)(333,434)(334,449)(335,450)(336,448)
(337,445)(338,446)(339,447)(340,444)(341,442)(342,443)(343,458)(344,459)
(345,457)(346,454)(347,455)(348,456)(349,453)(350,451)(351,452)(352,467)
(353,468)(354,466)(355,463)(356,464)(357,465)(358,462)(359,460)(360,461)
(361,548)(362,549)(363,547)(364,544)(365,545)(366,546)(367,543)(368,541)
(369,542)(370,557)(371,558)(372,556)(373,553)(374,554)(375,555)(376,552)
(377,550)(378,551)(379,566)(380,567)(381,565)(382,562)(383,563)(384,564)
(385,561)(386,559)(387,560)(388,575)(389,576)(390,574)(391,571)(392,572)
(393,573)(394,570)(395,568)(396,569)(397,512)(398,513)(399,511)(400,508)
(401,509)(402,510)(403,507)(404,505)(405,506)(406,521)(407,522)(408,520)
(409,517)(410,518)(411,519)(412,516)(413,514)(414,515)(415,530)(416,531)
(417,529)(418,526)(419,527)(420,528)(421,525)(422,523)(423,524)(424,539)
(425,540)(426,538)(427,535)(428,536)(429,537)(430,534)(431,532)(432,533);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,433)(  2,435)(  3,434)(  4,437)(  5,436)(  6,438)(  7,441)
(  8,440)(  9,439)( 10,442)( 11,444)( 12,443)( 13,446)( 14,445)( 15,447)
( 16,450)( 17,449)( 18,448)( 19,460)( 20,462)( 21,461)( 22,464)( 23,463)
( 24,465)( 25,468)( 26,467)( 27,466)( 28,451)( 29,453)( 30,452)( 31,455)
( 32,454)( 33,456)( 34,459)( 35,458)( 36,457)( 37,469)( 38,471)( 39,470)
( 40,473)( 41,472)( 42,474)( 43,477)( 44,476)( 45,475)( 46,478)( 47,480)
( 48,479)( 49,482)( 50,481)( 51,483)( 52,486)( 53,485)( 54,484)( 55,496)
( 56,498)( 57,497)( 58,500)( 59,499)( 60,501)( 61,504)( 62,503)( 63,502)
( 64,487)( 65,489)( 66,488)( 67,491)( 68,490)( 69,492)( 70,495)( 71,494)
( 72,493)( 73,523)( 74,525)( 75,524)( 76,527)( 77,526)( 78,528)( 79,531)
( 80,530)( 81,529)( 82,532)( 83,534)( 84,533)( 85,536)( 86,535)( 87,537)
( 88,540)( 89,539)( 90,538)( 91,505)( 92,507)( 93,506)( 94,509)( 95,508)
( 96,510)( 97,513)( 98,512)( 99,511)(100,514)(101,516)(102,515)(103,518)
(104,517)(105,519)(106,522)(107,521)(108,520)(109,559)(110,561)(111,560)
(112,563)(113,562)(114,564)(115,567)(116,566)(117,565)(118,568)(119,570)
(120,569)(121,572)(122,571)(123,573)(124,576)(125,575)(126,574)(127,541)
(128,543)(129,542)(130,545)(131,544)(132,546)(133,549)(134,548)(135,547)
(136,550)(137,552)(138,551)(139,554)(140,553)(141,555)(142,558)(143,557)
(144,556)(145,289)(146,291)(147,290)(148,293)(149,292)(150,294)(151,297)
(152,296)(153,295)(154,298)(155,300)(156,299)(157,302)(158,301)(159,303)
(160,306)(161,305)(162,304)(163,316)(164,318)(165,317)(166,320)(167,319)
(168,321)(169,324)(170,323)(171,322)(172,307)(173,309)(174,308)(175,311)
(176,310)(177,312)(178,315)(179,314)(180,313)(181,325)(182,327)(183,326)
(184,329)(185,328)(186,330)(187,333)(188,332)(189,331)(190,334)(191,336)
(192,335)(193,338)(194,337)(195,339)(196,342)(197,341)(198,340)(199,352)
(200,354)(201,353)(202,356)(203,355)(204,357)(205,360)(206,359)(207,358)
(208,343)(209,345)(210,344)(211,347)(212,346)(213,348)(214,351)(215,350)
(216,349)(217,379)(218,381)(219,380)(220,383)(221,382)(222,384)(223,387)
(224,386)(225,385)(226,388)(227,390)(228,389)(229,392)(230,391)(231,393)
(232,396)(233,395)(234,394)(235,361)(236,363)(237,362)(238,365)(239,364)
(240,366)(241,369)(242,368)(243,367)(244,370)(245,372)(246,371)(247,374)
(248,373)(249,375)(250,378)(251,377)(252,376)(253,415)(254,417)(255,416)
(256,419)(257,418)(258,420)(259,423)(260,422)(261,421)(262,424)(263,426)
(264,425)(265,428)(266,427)(267,429)(268,432)(269,431)(270,430)(271,397)
(272,399)(273,398)(274,401)(275,400)(276,402)(277,405)(278,404)(279,403)
(280,406)(281,408)(282,407)(283,410)(284,409)(285,411)(286,414)(287,413)
(288,412);
s1 := Sym(576)!(  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 19, 28)
( 20, 33)( 21, 35)( 22, 31)( 23, 36)( 24, 29)( 25, 34)( 26, 30)( 27, 32)
( 38, 42)( 39, 44)( 41, 45)( 47, 51)( 48, 53)( 50, 54)( 55, 64)( 56, 69)
( 57, 71)( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73, 91)
( 74, 96)( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)( 81, 95)
( 82,100)( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)( 89,102)
( 90,104)(109,127)(110,132)(111,134)(112,130)(113,135)(114,128)(115,133)
(116,129)(117,131)(118,136)(119,141)(120,143)(121,139)(122,144)(123,137)
(124,142)(125,138)(126,140)(145,181)(146,186)(147,188)(148,184)(149,189)
(150,182)(151,187)(152,183)(153,185)(154,190)(155,195)(156,197)(157,193)
(158,198)(159,191)(160,196)(161,192)(162,194)(163,208)(164,213)(165,215)
(166,211)(167,216)(168,209)(169,214)(170,210)(171,212)(172,199)(173,204)
(174,206)(175,202)(176,207)(177,200)(178,205)(179,201)(180,203)(217,271)
(218,276)(219,278)(220,274)(221,279)(222,272)(223,277)(224,273)(225,275)
(226,280)(227,285)(228,287)(229,283)(230,288)(231,281)(232,286)(233,282)
(234,284)(235,253)(236,258)(237,260)(238,256)(239,261)(240,254)(241,259)
(242,255)(243,257)(244,262)(245,267)(246,269)(247,265)(248,270)(249,263)
(250,268)(251,264)(252,266)(289,361)(290,366)(291,368)(292,364)(293,369)
(294,362)(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)
(302,378)(303,371)(304,376)(305,372)(306,374)(307,388)(308,393)(309,395)
(310,391)(311,396)(312,389)(313,394)(314,390)(315,392)(316,379)(317,384)
(318,386)(319,382)(320,387)(321,380)(322,385)(323,381)(324,383)(325,397)
(326,402)(327,404)(328,400)(329,405)(330,398)(331,403)(332,399)(333,401)
(334,406)(335,411)(336,413)(337,409)(338,414)(339,407)(340,412)(341,408)
(342,410)(343,424)(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)
(350,426)(351,428)(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)
(358,421)(359,417)(360,419)(433,541)(434,546)(435,548)(436,544)(437,549)
(438,542)(439,547)(440,543)(441,545)(442,550)(443,555)(444,557)(445,553)
(446,558)(447,551)(448,556)(449,552)(450,554)(451,568)(452,573)(453,575)
(454,571)(455,576)(456,569)(457,574)(458,570)(459,572)(460,559)(461,564)
(462,566)(463,562)(464,567)(465,560)(466,565)(467,561)(468,563)(469,505)
(470,510)(471,512)(472,508)(473,513)(474,506)(475,511)(476,507)(477,509)
(478,514)(479,519)(480,521)(481,517)(482,522)(483,515)(484,520)(485,516)
(486,518)(487,532)(488,537)(489,539)(490,535)(491,540)(492,533)(493,538)
(494,534)(495,536)(496,523)(497,528)(498,530)(499,526)(500,531)(501,524)
(502,529)(503,525)(504,527);
s2 := Sym(576)!(  1,188)(  2,189)(  3,187)(  4,184)(  5,185)(  6,186)(  7,183)
(  8,181)(  9,182)( 10,197)( 11,198)( 12,196)( 13,193)( 14,194)( 15,195)
( 16,192)( 17,190)( 18,191)( 19,206)( 20,207)( 21,205)( 22,202)( 23,203)
( 24,204)( 25,201)( 26,199)( 27,200)( 28,215)( 29,216)( 30,214)( 31,211)
( 32,212)( 33,213)( 34,210)( 35,208)( 36,209)( 37,152)( 38,153)( 39,151)
( 40,148)( 41,149)( 42,150)( 43,147)( 44,145)( 45,146)( 46,161)( 47,162)
( 48,160)( 49,157)( 50,158)( 51,159)( 52,156)( 53,154)( 54,155)( 55,170)
( 56,171)( 57,169)( 58,166)( 59,167)( 60,168)( 61,165)( 62,163)( 63,164)
( 64,179)( 65,180)( 66,178)( 67,175)( 68,176)( 69,177)( 70,174)( 71,172)
( 72,173)( 73,260)( 74,261)( 75,259)( 76,256)( 77,257)( 78,258)( 79,255)
( 80,253)( 81,254)( 82,269)( 83,270)( 84,268)( 85,265)( 86,266)( 87,267)
( 88,264)( 89,262)( 90,263)( 91,278)( 92,279)( 93,277)( 94,274)( 95,275)
( 96,276)( 97,273)( 98,271)( 99,272)(100,287)(101,288)(102,286)(103,283)
(104,284)(105,285)(106,282)(107,280)(108,281)(109,224)(110,225)(111,223)
(112,220)(113,221)(114,222)(115,219)(116,217)(117,218)(118,233)(119,234)
(120,232)(121,229)(122,230)(123,231)(124,228)(125,226)(126,227)(127,242)
(128,243)(129,241)(130,238)(131,239)(132,240)(133,237)(134,235)(135,236)
(136,251)(137,252)(138,250)(139,247)(140,248)(141,249)(142,246)(143,244)
(144,245)(289,476)(290,477)(291,475)(292,472)(293,473)(294,474)(295,471)
(296,469)(297,470)(298,485)(299,486)(300,484)(301,481)(302,482)(303,483)
(304,480)(305,478)(306,479)(307,494)(308,495)(309,493)(310,490)(311,491)
(312,492)(313,489)(314,487)(315,488)(316,503)(317,504)(318,502)(319,499)
(320,500)(321,501)(322,498)(323,496)(324,497)(325,440)(326,441)(327,439)
(328,436)(329,437)(330,438)(331,435)(332,433)(333,434)(334,449)(335,450)
(336,448)(337,445)(338,446)(339,447)(340,444)(341,442)(342,443)(343,458)
(344,459)(345,457)(346,454)(347,455)(348,456)(349,453)(350,451)(351,452)
(352,467)(353,468)(354,466)(355,463)(356,464)(357,465)(358,462)(359,460)
(360,461)(361,548)(362,549)(363,547)(364,544)(365,545)(366,546)(367,543)
(368,541)(369,542)(370,557)(371,558)(372,556)(373,553)(374,554)(375,555)
(376,552)(377,550)(378,551)(379,566)(380,567)(381,565)(382,562)(383,563)
(384,564)(385,561)(386,559)(387,560)(388,575)(389,576)(390,574)(391,571)
(392,572)(393,573)(394,570)(395,568)(396,569)(397,512)(398,513)(399,511)
(400,508)(401,509)(402,510)(403,507)(404,505)(405,506)(406,521)(407,522)
(408,520)(409,517)(410,518)(411,519)(412,516)(413,514)(414,515)(415,530)
(416,531)(417,529)(418,526)(419,527)(420,528)(421,525)(422,523)(423,524)
(424,539)(425,540)(426,538)(427,535)(428,536)(429,537)(430,534)(431,532)
(432,533);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope