Polytope of Type {36,16}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,16}*1152b
if this polytope has a name.
Group : SmallGroup(1152,32280)
Rank : 3
Schlafli Type : {36,16}
Number of vertices, edges, etc : 36, 288, 16
Order of s0s1s2 : 144
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {36,8}*576a
   3-fold quotients : {12,16}*384b
   4-fold quotients : {36,4}*288a, {18,8}*288
   6-fold quotients : {12,8}*192a
   8-fold quotients : {36,2}*144, {18,4}*144a
   9-fold quotients : {4,16}*128b
   12-fold quotients : {12,4}*96a, {6,8}*96
   16-fold quotients : {18,2}*72
   18-fold quotients : {4,8}*64a
   24-fold quotients : {12,2}*48, {6,4}*48a
   32-fold quotients : {9,2}*36
   36-fold quotients : {4,4}*32, {2,8}*32
   48-fold quotients : {6,2}*24
   72-fold quotients : {2,4}*16, {4,2}*16
   96-fold quotients : {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,145)(  2,147)(  3,146)(  4,153)(  5,152)(  6,151)(  7,150)(  8,149)
(  9,148)( 10,154)( 11,156)( 12,155)( 13,162)( 14,161)( 15,160)( 16,159)
( 17,158)( 18,157)( 19,163)( 20,165)( 21,164)( 22,171)( 23,170)( 24,169)
( 25,168)( 26,167)( 27,166)( 28,172)( 29,174)( 30,173)( 31,180)( 32,179)
( 33,178)( 34,177)( 35,176)( 36,175)( 37,181)( 38,183)( 39,182)( 40,189)
( 41,188)( 42,187)( 43,186)( 44,185)( 45,184)( 46,190)( 47,192)( 48,191)
( 49,198)( 50,197)( 51,196)( 52,195)( 53,194)( 54,193)( 55,199)( 56,201)
( 57,200)( 58,207)( 59,206)( 60,205)( 61,204)( 62,203)( 63,202)( 64,208)
( 65,210)( 66,209)( 67,216)( 68,215)( 69,214)( 70,213)( 71,212)( 72,211)
( 73,226)( 74,228)( 75,227)( 76,234)( 77,233)( 78,232)( 79,231)( 80,230)
( 81,229)( 82,217)( 83,219)( 84,218)( 85,225)( 86,224)( 87,223)( 88,222)
( 89,221)( 90,220)( 91,244)( 92,246)( 93,245)( 94,252)( 95,251)( 96,250)
( 97,249)( 98,248)( 99,247)(100,235)(101,237)(102,236)(103,243)(104,242)
(105,241)(106,240)(107,239)(108,238)(109,262)(110,264)(111,263)(112,270)
(113,269)(114,268)(115,267)(116,266)(117,265)(118,253)(119,255)(120,254)
(121,261)(122,260)(123,259)(124,258)(125,257)(126,256)(127,280)(128,282)
(129,281)(130,288)(131,287)(132,286)(133,285)(134,284)(135,283)(136,271)
(137,273)(138,272)(139,279)(140,278)(141,277)(142,276)(143,275)(144,274)
(289,433)(290,435)(291,434)(292,441)(293,440)(294,439)(295,438)(296,437)
(297,436)(298,442)(299,444)(300,443)(301,450)(302,449)(303,448)(304,447)
(305,446)(306,445)(307,451)(308,453)(309,452)(310,459)(311,458)(312,457)
(313,456)(314,455)(315,454)(316,460)(317,462)(318,461)(319,468)(320,467)
(321,466)(322,465)(323,464)(324,463)(325,469)(326,471)(327,470)(328,477)
(329,476)(330,475)(331,474)(332,473)(333,472)(334,478)(335,480)(336,479)
(337,486)(338,485)(339,484)(340,483)(341,482)(342,481)(343,487)(344,489)
(345,488)(346,495)(347,494)(348,493)(349,492)(350,491)(351,490)(352,496)
(353,498)(354,497)(355,504)(356,503)(357,502)(358,501)(359,500)(360,499)
(361,514)(362,516)(363,515)(364,522)(365,521)(366,520)(367,519)(368,518)
(369,517)(370,505)(371,507)(372,506)(373,513)(374,512)(375,511)(376,510)
(377,509)(378,508)(379,532)(380,534)(381,533)(382,540)(383,539)(384,538)
(385,537)(386,536)(387,535)(388,523)(389,525)(390,524)(391,531)(392,530)
(393,529)(394,528)(395,527)(396,526)(397,550)(398,552)(399,551)(400,558)
(401,557)(402,556)(403,555)(404,554)(405,553)(406,541)(407,543)(408,542)
(409,549)(410,548)(411,547)(412,546)(413,545)(414,544)(415,568)(416,570)
(417,569)(418,576)(419,575)(420,574)(421,573)(422,572)(423,571)(424,559)
(425,561)(426,560)(427,567)(428,566)(429,565)(430,564)(431,563)(432,562);;
s1 := (  1,  4)(  2,  6)(  3,  5)(  7,  9)( 10, 13)( 11, 15)( 12, 14)( 16, 18)
( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 36)( 26, 35)
( 27, 34)( 37, 40)( 38, 42)( 39, 41)( 43, 45)( 46, 49)( 47, 51)( 48, 50)
( 52, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)( 61, 72)
( 62, 71)( 63, 70)( 73, 94)( 74, 96)( 75, 95)( 76, 91)( 77, 93)( 78, 92)
( 79, 99)( 80, 98)( 81, 97)( 82,103)( 83,105)( 84,104)( 85,100)( 86,102)
( 87,101)( 88,108)( 89,107)( 90,106)(109,130)(110,132)(111,131)(112,127)
(113,129)(114,128)(115,135)(116,134)(117,133)(118,139)(119,141)(120,140)
(121,136)(122,138)(123,137)(124,144)(125,143)(126,142)(145,184)(146,186)
(147,185)(148,181)(149,183)(150,182)(151,189)(152,188)(153,187)(154,193)
(155,195)(156,194)(157,190)(158,192)(159,191)(160,198)(161,197)(162,196)
(163,211)(164,213)(165,212)(166,208)(167,210)(168,209)(169,216)(170,215)
(171,214)(172,202)(173,204)(174,203)(175,199)(176,201)(177,200)(178,207)
(179,206)(180,205)(217,274)(218,276)(219,275)(220,271)(221,273)(222,272)
(223,279)(224,278)(225,277)(226,283)(227,285)(228,284)(229,280)(230,282)
(231,281)(232,288)(233,287)(234,286)(235,256)(236,258)(237,257)(238,253)
(239,255)(240,254)(241,261)(242,260)(243,259)(244,265)(245,267)(246,266)
(247,262)(248,264)(249,263)(250,270)(251,269)(252,268)(289,364)(290,366)
(291,365)(292,361)(293,363)(294,362)(295,369)(296,368)(297,367)(298,373)
(299,375)(300,374)(301,370)(302,372)(303,371)(304,378)(305,377)(306,376)
(307,391)(308,393)(309,392)(310,388)(311,390)(312,389)(313,396)(314,395)
(315,394)(316,382)(317,384)(318,383)(319,379)(320,381)(321,380)(322,387)
(323,386)(324,385)(325,400)(326,402)(327,401)(328,397)(329,399)(330,398)
(331,405)(332,404)(333,403)(334,409)(335,411)(336,410)(337,406)(338,408)
(339,407)(340,414)(341,413)(342,412)(343,427)(344,429)(345,428)(346,424)
(347,426)(348,425)(349,432)(350,431)(351,430)(352,418)(353,420)(354,419)
(355,415)(356,417)(357,416)(358,423)(359,422)(360,421)(433,553)(434,555)
(435,554)(436,550)(437,552)(438,551)(439,558)(440,557)(441,556)(442,544)
(443,546)(444,545)(445,541)(446,543)(447,542)(448,549)(449,548)(450,547)
(451,562)(452,564)(453,563)(454,559)(455,561)(456,560)(457,567)(458,566)
(459,565)(460,571)(461,573)(462,572)(463,568)(464,570)(465,569)(466,576)
(467,575)(468,574)(469,517)(470,519)(471,518)(472,514)(473,516)(474,515)
(475,522)(476,521)(477,520)(478,508)(479,510)(480,509)(481,505)(482,507)
(483,506)(484,513)(485,512)(486,511)(487,526)(488,528)(489,527)(490,523)
(491,525)(492,524)(493,531)(494,530)(495,529)(496,535)(497,537)(498,536)
(499,532)(500,534)(501,533)(502,540)(503,539)(504,538);;
s2 := (  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)(  8,296)
(  9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)( 16,304)
( 17,305)( 18,306)( 19,316)( 20,317)( 21,318)( 22,319)( 23,320)( 24,321)
( 25,322)( 26,323)( 27,324)( 28,307)( 29,308)( 30,309)( 31,310)( 32,311)
( 33,312)( 34,313)( 35,314)( 36,315)( 37,334)( 38,335)( 39,336)( 40,337)
( 41,338)( 42,339)( 43,340)( 44,341)( 45,342)( 46,325)( 47,326)( 48,327)
( 49,328)( 50,329)( 51,330)( 52,331)( 53,332)( 54,333)( 55,343)( 56,344)
( 57,345)( 58,346)( 59,347)( 60,348)( 61,349)( 62,350)( 63,351)( 64,352)
( 65,353)( 66,354)( 67,355)( 68,356)( 69,357)( 70,358)( 71,359)( 72,360)
( 73,379)( 74,380)( 75,381)( 76,382)( 77,383)( 78,384)( 79,385)( 80,386)
( 81,387)( 82,388)( 83,389)( 84,390)( 85,391)( 86,392)( 87,393)( 88,394)
( 89,395)( 90,396)( 91,361)( 92,362)( 93,363)( 94,364)( 95,365)( 96,366)
( 97,367)( 98,368)( 99,369)(100,370)(101,371)(102,372)(103,373)(104,374)
(105,375)(106,376)(107,377)(108,378)(109,424)(110,425)(111,426)(112,427)
(113,428)(114,429)(115,430)(116,431)(117,432)(118,415)(119,416)(120,417)
(121,418)(122,419)(123,420)(124,421)(125,422)(126,423)(127,406)(128,407)
(129,408)(130,409)(131,410)(132,411)(133,412)(134,413)(135,414)(136,397)
(137,398)(138,399)(139,400)(140,401)(141,402)(142,403)(143,404)(144,405)
(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)(152,440)
(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)(160,448)
(161,449)(162,450)(163,460)(164,461)(165,462)(166,463)(167,464)(168,465)
(169,466)(170,467)(171,468)(172,451)(173,452)(174,453)(175,454)(176,455)
(177,456)(178,457)(179,458)(180,459)(181,478)(182,479)(183,480)(184,481)
(185,482)(186,483)(187,484)(188,485)(189,486)(190,469)(191,470)(192,471)
(193,472)(194,473)(195,474)(196,475)(197,476)(198,477)(199,487)(200,488)
(201,489)(202,490)(203,491)(204,492)(205,493)(206,494)(207,495)(208,496)
(209,497)(210,498)(211,499)(212,500)(213,501)(214,502)(215,503)(216,504)
(217,523)(218,524)(219,525)(220,526)(221,527)(222,528)(223,529)(224,530)
(225,531)(226,532)(227,533)(228,534)(229,535)(230,536)(231,537)(232,538)
(233,539)(234,540)(235,505)(236,506)(237,507)(238,508)(239,509)(240,510)
(241,511)(242,512)(243,513)(244,514)(245,515)(246,516)(247,517)(248,518)
(249,519)(250,520)(251,521)(252,522)(253,568)(254,569)(255,570)(256,571)
(257,572)(258,573)(259,574)(260,575)(261,576)(262,559)(263,560)(264,561)
(265,562)(266,563)(267,564)(268,565)(269,566)(270,567)(271,550)(272,551)
(273,552)(274,553)(275,554)(276,555)(277,556)(278,557)(279,558)(280,541)
(281,542)(282,543)(283,544)(284,545)(285,546)(286,547)(287,548)(288,549);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,145)(  2,147)(  3,146)(  4,153)(  5,152)(  6,151)(  7,150)
(  8,149)(  9,148)( 10,154)( 11,156)( 12,155)( 13,162)( 14,161)( 15,160)
( 16,159)( 17,158)( 18,157)( 19,163)( 20,165)( 21,164)( 22,171)( 23,170)
( 24,169)( 25,168)( 26,167)( 27,166)( 28,172)( 29,174)( 30,173)( 31,180)
( 32,179)( 33,178)( 34,177)( 35,176)( 36,175)( 37,181)( 38,183)( 39,182)
( 40,189)( 41,188)( 42,187)( 43,186)( 44,185)( 45,184)( 46,190)( 47,192)
( 48,191)( 49,198)( 50,197)( 51,196)( 52,195)( 53,194)( 54,193)( 55,199)
( 56,201)( 57,200)( 58,207)( 59,206)( 60,205)( 61,204)( 62,203)( 63,202)
( 64,208)( 65,210)( 66,209)( 67,216)( 68,215)( 69,214)( 70,213)( 71,212)
( 72,211)( 73,226)( 74,228)( 75,227)( 76,234)( 77,233)( 78,232)( 79,231)
( 80,230)( 81,229)( 82,217)( 83,219)( 84,218)( 85,225)( 86,224)( 87,223)
( 88,222)( 89,221)( 90,220)( 91,244)( 92,246)( 93,245)( 94,252)( 95,251)
( 96,250)( 97,249)( 98,248)( 99,247)(100,235)(101,237)(102,236)(103,243)
(104,242)(105,241)(106,240)(107,239)(108,238)(109,262)(110,264)(111,263)
(112,270)(113,269)(114,268)(115,267)(116,266)(117,265)(118,253)(119,255)
(120,254)(121,261)(122,260)(123,259)(124,258)(125,257)(126,256)(127,280)
(128,282)(129,281)(130,288)(131,287)(132,286)(133,285)(134,284)(135,283)
(136,271)(137,273)(138,272)(139,279)(140,278)(141,277)(142,276)(143,275)
(144,274)(289,433)(290,435)(291,434)(292,441)(293,440)(294,439)(295,438)
(296,437)(297,436)(298,442)(299,444)(300,443)(301,450)(302,449)(303,448)
(304,447)(305,446)(306,445)(307,451)(308,453)(309,452)(310,459)(311,458)
(312,457)(313,456)(314,455)(315,454)(316,460)(317,462)(318,461)(319,468)
(320,467)(321,466)(322,465)(323,464)(324,463)(325,469)(326,471)(327,470)
(328,477)(329,476)(330,475)(331,474)(332,473)(333,472)(334,478)(335,480)
(336,479)(337,486)(338,485)(339,484)(340,483)(341,482)(342,481)(343,487)
(344,489)(345,488)(346,495)(347,494)(348,493)(349,492)(350,491)(351,490)
(352,496)(353,498)(354,497)(355,504)(356,503)(357,502)(358,501)(359,500)
(360,499)(361,514)(362,516)(363,515)(364,522)(365,521)(366,520)(367,519)
(368,518)(369,517)(370,505)(371,507)(372,506)(373,513)(374,512)(375,511)
(376,510)(377,509)(378,508)(379,532)(380,534)(381,533)(382,540)(383,539)
(384,538)(385,537)(386,536)(387,535)(388,523)(389,525)(390,524)(391,531)
(392,530)(393,529)(394,528)(395,527)(396,526)(397,550)(398,552)(399,551)
(400,558)(401,557)(402,556)(403,555)(404,554)(405,553)(406,541)(407,543)
(408,542)(409,549)(410,548)(411,547)(412,546)(413,545)(414,544)(415,568)
(416,570)(417,569)(418,576)(419,575)(420,574)(421,573)(422,572)(423,571)
(424,559)(425,561)(426,560)(427,567)(428,566)(429,565)(430,564)(431,563)
(432,562);
s1 := Sym(576)!(  1,  4)(  2,  6)(  3,  5)(  7,  9)( 10, 13)( 11, 15)( 12, 14)
( 16, 18)( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 36)
( 26, 35)( 27, 34)( 37, 40)( 38, 42)( 39, 41)( 43, 45)( 46, 49)( 47, 51)
( 48, 50)( 52, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)
( 61, 72)( 62, 71)( 63, 70)( 73, 94)( 74, 96)( 75, 95)( 76, 91)( 77, 93)
( 78, 92)( 79, 99)( 80, 98)( 81, 97)( 82,103)( 83,105)( 84,104)( 85,100)
( 86,102)( 87,101)( 88,108)( 89,107)( 90,106)(109,130)(110,132)(111,131)
(112,127)(113,129)(114,128)(115,135)(116,134)(117,133)(118,139)(119,141)
(120,140)(121,136)(122,138)(123,137)(124,144)(125,143)(126,142)(145,184)
(146,186)(147,185)(148,181)(149,183)(150,182)(151,189)(152,188)(153,187)
(154,193)(155,195)(156,194)(157,190)(158,192)(159,191)(160,198)(161,197)
(162,196)(163,211)(164,213)(165,212)(166,208)(167,210)(168,209)(169,216)
(170,215)(171,214)(172,202)(173,204)(174,203)(175,199)(176,201)(177,200)
(178,207)(179,206)(180,205)(217,274)(218,276)(219,275)(220,271)(221,273)
(222,272)(223,279)(224,278)(225,277)(226,283)(227,285)(228,284)(229,280)
(230,282)(231,281)(232,288)(233,287)(234,286)(235,256)(236,258)(237,257)
(238,253)(239,255)(240,254)(241,261)(242,260)(243,259)(244,265)(245,267)
(246,266)(247,262)(248,264)(249,263)(250,270)(251,269)(252,268)(289,364)
(290,366)(291,365)(292,361)(293,363)(294,362)(295,369)(296,368)(297,367)
(298,373)(299,375)(300,374)(301,370)(302,372)(303,371)(304,378)(305,377)
(306,376)(307,391)(308,393)(309,392)(310,388)(311,390)(312,389)(313,396)
(314,395)(315,394)(316,382)(317,384)(318,383)(319,379)(320,381)(321,380)
(322,387)(323,386)(324,385)(325,400)(326,402)(327,401)(328,397)(329,399)
(330,398)(331,405)(332,404)(333,403)(334,409)(335,411)(336,410)(337,406)
(338,408)(339,407)(340,414)(341,413)(342,412)(343,427)(344,429)(345,428)
(346,424)(347,426)(348,425)(349,432)(350,431)(351,430)(352,418)(353,420)
(354,419)(355,415)(356,417)(357,416)(358,423)(359,422)(360,421)(433,553)
(434,555)(435,554)(436,550)(437,552)(438,551)(439,558)(440,557)(441,556)
(442,544)(443,546)(444,545)(445,541)(446,543)(447,542)(448,549)(449,548)
(450,547)(451,562)(452,564)(453,563)(454,559)(455,561)(456,560)(457,567)
(458,566)(459,565)(460,571)(461,573)(462,572)(463,568)(464,570)(465,569)
(466,576)(467,575)(468,574)(469,517)(470,519)(471,518)(472,514)(473,516)
(474,515)(475,522)(476,521)(477,520)(478,508)(479,510)(480,509)(481,505)
(482,507)(483,506)(484,513)(485,512)(486,511)(487,526)(488,528)(489,527)
(490,523)(491,525)(492,524)(493,531)(494,530)(495,529)(496,535)(497,537)
(498,536)(499,532)(500,534)(501,533)(502,540)(503,539)(504,538);
s2 := Sym(576)!(  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)
(  8,296)(  9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)
( 16,304)( 17,305)( 18,306)( 19,316)( 20,317)( 21,318)( 22,319)( 23,320)
( 24,321)( 25,322)( 26,323)( 27,324)( 28,307)( 29,308)( 30,309)( 31,310)
( 32,311)( 33,312)( 34,313)( 35,314)( 36,315)( 37,334)( 38,335)( 39,336)
( 40,337)( 41,338)( 42,339)( 43,340)( 44,341)( 45,342)( 46,325)( 47,326)
( 48,327)( 49,328)( 50,329)( 51,330)( 52,331)( 53,332)( 54,333)( 55,343)
( 56,344)( 57,345)( 58,346)( 59,347)( 60,348)( 61,349)( 62,350)( 63,351)
( 64,352)( 65,353)( 66,354)( 67,355)( 68,356)( 69,357)( 70,358)( 71,359)
( 72,360)( 73,379)( 74,380)( 75,381)( 76,382)( 77,383)( 78,384)( 79,385)
( 80,386)( 81,387)( 82,388)( 83,389)( 84,390)( 85,391)( 86,392)( 87,393)
( 88,394)( 89,395)( 90,396)( 91,361)( 92,362)( 93,363)( 94,364)( 95,365)
( 96,366)( 97,367)( 98,368)( 99,369)(100,370)(101,371)(102,372)(103,373)
(104,374)(105,375)(106,376)(107,377)(108,378)(109,424)(110,425)(111,426)
(112,427)(113,428)(114,429)(115,430)(116,431)(117,432)(118,415)(119,416)
(120,417)(121,418)(122,419)(123,420)(124,421)(125,422)(126,423)(127,406)
(128,407)(129,408)(130,409)(131,410)(132,411)(133,412)(134,413)(135,414)
(136,397)(137,398)(138,399)(139,400)(140,401)(141,402)(142,403)(143,404)
(144,405)(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)
(152,440)(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)
(160,448)(161,449)(162,450)(163,460)(164,461)(165,462)(166,463)(167,464)
(168,465)(169,466)(170,467)(171,468)(172,451)(173,452)(174,453)(175,454)
(176,455)(177,456)(178,457)(179,458)(180,459)(181,478)(182,479)(183,480)
(184,481)(185,482)(186,483)(187,484)(188,485)(189,486)(190,469)(191,470)
(192,471)(193,472)(194,473)(195,474)(196,475)(197,476)(198,477)(199,487)
(200,488)(201,489)(202,490)(203,491)(204,492)(205,493)(206,494)(207,495)
(208,496)(209,497)(210,498)(211,499)(212,500)(213,501)(214,502)(215,503)
(216,504)(217,523)(218,524)(219,525)(220,526)(221,527)(222,528)(223,529)
(224,530)(225,531)(226,532)(227,533)(228,534)(229,535)(230,536)(231,537)
(232,538)(233,539)(234,540)(235,505)(236,506)(237,507)(238,508)(239,509)
(240,510)(241,511)(242,512)(243,513)(244,514)(245,515)(246,516)(247,517)
(248,518)(249,519)(250,520)(251,521)(252,522)(253,568)(254,569)(255,570)
(256,571)(257,572)(258,573)(259,574)(260,575)(261,576)(262,559)(263,560)
(264,561)(265,562)(266,563)(267,564)(268,565)(269,566)(270,567)(271,550)
(272,551)(273,552)(274,553)(275,554)(276,555)(277,556)(278,557)(279,558)
(280,541)(281,542)(282,543)(283,544)(284,545)(285,546)(286,547)(287,548)
(288,549);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope