include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {290,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {290,2}*1160
if this polytope has a name.
Group : SmallGroup(1160,48)
Rank : 3
Schlafli Type : {290,2}
Number of vertices, edges, etc : 290, 290, 2
Order of s0s1s2 : 290
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {145,2}*580
5-fold quotients : {58,2}*232
10-fold quotients : {29,2}*116
29-fold quotients : {10,2}*40
58-fold quotients : {5,2}*20
145-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 29)( 3, 28)( 4, 27)( 5, 26)( 6, 25)( 7, 24)( 8, 23)( 9, 22)
( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 30,117)( 31,145)
( 32,144)( 33,143)( 34,142)( 35,141)( 36,140)( 37,139)( 38,138)( 39,137)
( 40,136)( 41,135)( 42,134)( 43,133)( 44,132)( 45,131)( 46,130)( 47,129)
( 48,128)( 49,127)( 50,126)( 51,125)( 52,124)( 53,123)( 54,122)( 55,121)
( 56,120)( 57,119)( 58,118)( 59, 88)( 60,116)( 61,115)( 62,114)( 63,113)
( 64,112)( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)( 70,106)( 71,105)
( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)( 78, 98)( 79, 97)
( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)( 87, 89)
(147,174)(148,173)(149,172)(150,171)(151,170)(152,169)(153,168)(154,167)
(155,166)(156,165)(157,164)(158,163)(159,162)(160,161)(175,262)(176,290)
(177,289)(178,288)(179,287)(180,286)(181,285)(182,284)(183,283)(184,282)
(185,281)(186,280)(187,279)(188,278)(189,277)(190,276)(191,275)(192,274)
(193,273)(194,272)(195,271)(196,270)(197,269)(198,268)(199,267)(200,266)
(201,265)(202,264)(203,263)(204,233)(205,261)(206,260)(207,259)(208,258)
(209,257)(210,256)(211,255)(212,254)(213,253)(214,252)(215,251)(216,250)
(217,249)(218,248)(219,247)(220,246)(221,245)(222,244)(223,243)(224,242)
(225,241)(226,240)(227,239)(228,238)(229,237)(230,236)(231,235)(232,234);;
s1 := ( 1,176)( 2,175)( 3,203)( 4,202)( 5,201)( 6,200)( 7,199)( 8,198)
( 9,197)( 10,196)( 11,195)( 12,194)( 13,193)( 14,192)( 15,191)( 16,190)
( 17,189)( 18,188)( 19,187)( 20,186)( 21,185)( 22,184)( 23,183)( 24,182)
( 25,181)( 26,180)( 27,179)( 28,178)( 29,177)( 30,147)( 31,146)( 32,174)
( 33,173)( 34,172)( 35,171)( 36,170)( 37,169)( 38,168)( 39,167)( 40,166)
( 41,165)( 42,164)( 43,163)( 44,162)( 45,161)( 46,160)( 47,159)( 48,158)
( 49,157)( 50,156)( 51,155)( 52,154)( 53,153)( 54,152)( 55,151)( 56,150)
( 57,149)( 58,148)( 59,263)( 60,262)( 61,290)( 62,289)( 63,288)( 64,287)
( 65,286)( 66,285)( 67,284)( 68,283)( 69,282)( 70,281)( 71,280)( 72,279)
( 73,278)( 74,277)( 75,276)( 76,275)( 77,274)( 78,273)( 79,272)( 80,271)
( 81,270)( 82,269)( 83,268)( 84,267)( 85,266)( 86,265)( 87,264)( 88,234)
( 89,233)( 90,261)( 91,260)( 92,259)( 93,258)( 94,257)( 95,256)( 96,255)
( 97,254)( 98,253)( 99,252)(100,251)(101,250)(102,249)(103,248)(104,247)
(105,246)(106,245)(107,244)(108,243)(109,242)(110,241)(111,240)(112,239)
(113,238)(114,237)(115,236)(116,235)(117,205)(118,204)(119,232)(120,231)
(121,230)(122,229)(123,228)(124,227)(125,226)(126,225)(127,224)(128,223)
(129,222)(130,221)(131,220)(132,219)(133,218)(134,217)(135,216)(136,215)
(137,214)(138,213)(139,212)(140,211)(141,210)(142,209)(143,208)(144,207)
(145,206);;
s2 := (291,292);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(292)!( 2, 29)( 3, 28)( 4, 27)( 5, 26)( 6, 25)( 7, 24)( 8, 23)
( 9, 22)( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 30,117)
( 31,145)( 32,144)( 33,143)( 34,142)( 35,141)( 36,140)( 37,139)( 38,138)
( 39,137)( 40,136)( 41,135)( 42,134)( 43,133)( 44,132)( 45,131)( 46,130)
( 47,129)( 48,128)( 49,127)( 50,126)( 51,125)( 52,124)( 53,123)( 54,122)
( 55,121)( 56,120)( 57,119)( 58,118)( 59, 88)( 60,116)( 61,115)( 62,114)
( 63,113)( 64,112)( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)( 70,106)
( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)( 78, 98)
( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)
( 87, 89)(147,174)(148,173)(149,172)(150,171)(151,170)(152,169)(153,168)
(154,167)(155,166)(156,165)(157,164)(158,163)(159,162)(160,161)(175,262)
(176,290)(177,289)(178,288)(179,287)(180,286)(181,285)(182,284)(183,283)
(184,282)(185,281)(186,280)(187,279)(188,278)(189,277)(190,276)(191,275)
(192,274)(193,273)(194,272)(195,271)(196,270)(197,269)(198,268)(199,267)
(200,266)(201,265)(202,264)(203,263)(204,233)(205,261)(206,260)(207,259)
(208,258)(209,257)(210,256)(211,255)(212,254)(213,253)(214,252)(215,251)
(216,250)(217,249)(218,248)(219,247)(220,246)(221,245)(222,244)(223,243)
(224,242)(225,241)(226,240)(227,239)(228,238)(229,237)(230,236)(231,235)
(232,234);
s1 := Sym(292)!( 1,176)( 2,175)( 3,203)( 4,202)( 5,201)( 6,200)( 7,199)
( 8,198)( 9,197)( 10,196)( 11,195)( 12,194)( 13,193)( 14,192)( 15,191)
( 16,190)( 17,189)( 18,188)( 19,187)( 20,186)( 21,185)( 22,184)( 23,183)
( 24,182)( 25,181)( 26,180)( 27,179)( 28,178)( 29,177)( 30,147)( 31,146)
( 32,174)( 33,173)( 34,172)( 35,171)( 36,170)( 37,169)( 38,168)( 39,167)
( 40,166)( 41,165)( 42,164)( 43,163)( 44,162)( 45,161)( 46,160)( 47,159)
( 48,158)( 49,157)( 50,156)( 51,155)( 52,154)( 53,153)( 54,152)( 55,151)
( 56,150)( 57,149)( 58,148)( 59,263)( 60,262)( 61,290)( 62,289)( 63,288)
( 64,287)( 65,286)( 66,285)( 67,284)( 68,283)( 69,282)( 70,281)( 71,280)
( 72,279)( 73,278)( 74,277)( 75,276)( 76,275)( 77,274)( 78,273)( 79,272)
( 80,271)( 81,270)( 82,269)( 83,268)( 84,267)( 85,266)( 86,265)( 87,264)
( 88,234)( 89,233)( 90,261)( 91,260)( 92,259)( 93,258)( 94,257)( 95,256)
( 96,255)( 97,254)( 98,253)( 99,252)(100,251)(101,250)(102,249)(103,248)
(104,247)(105,246)(106,245)(107,244)(108,243)(109,242)(110,241)(111,240)
(112,239)(113,238)(114,237)(115,236)(116,235)(117,205)(118,204)(119,232)
(120,231)(121,230)(122,229)(123,228)(124,227)(125,226)(126,225)(127,224)
(128,223)(129,222)(130,221)(131,220)(132,219)(133,218)(134,217)(135,216)
(136,215)(137,214)(138,213)(139,212)(140,211)(141,210)(142,209)(143,208)
(144,207)(145,206);
s2 := Sym(292)!(291,292);
poly := sub<Sym(292)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope