include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {294,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {294,2}*1176
if this polytope has a name.
Group : SmallGroup(1176,55)
Rank : 3
Schlafli Type : {294,2}
Number of vertices, edges, etc : 294, 294, 2
Order of s0s1s2 : 294
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {147,2}*588
3-fold quotients : {98,2}*392
6-fold quotients : {49,2}*196
7-fold quotients : {42,2}*168
14-fold quotients : {21,2}*84
21-fold quotients : {14,2}*56
42-fold quotients : {7,2}*28
49-fold quotients : {6,2}*24
98-fold quotients : {3,2}*12
147-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8, 49)( 9, 48)( 10, 47)( 11, 46)( 12, 45)
( 13, 44)( 14, 43)( 15, 42)( 16, 41)( 17, 40)( 18, 39)( 19, 38)( 20, 37)
( 21, 36)( 22, 35)( 23, 34)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)
( 50, 99)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,100)( 57,147)
( 58,146)( 59,145)( 60,144)( 61,143)( 62,142)( 63,141)( 64,140)( 65,139)
( 66,138)( 67,137)( 68,136)( 69,135)( 70,134)( 71,133)( 72,132)( 73,131)
( 74,130)( 75,129)( 76,128)( 77,127)( 78,126)( 79,125)( 80,124)( 81,123)
( 82,122)( 83,121)( 84,120)( 85,119)( 86,118)( 87,117)( 88,116)( 89,115)
( 90,114)( 91,113)( 92,112)( 93,111)( 94,110)( 95,109)( 96,108)( 97,107)
( 98,106)(149,154)(150,153)(151,152)(155,196)(156,195)(157,194)(158,193)
(159,192)(160,191)(161,190)(162,189)(163,188)(164,187)(165,186)(166,185)
(167,184)(168,183)(169,182)(170,181)(171,180)(172,179)(173,178)(174,177)
(175,176)(197,246)(198,252)(199,251)(200,250)(201,249)(202,248)(203,247)
(204,294)(205,293)(206,292)(207,291)(208,290)(209,289)(210,288)(211,287)
(212,286)(213,285)(214,284)(215,283)(216,282)(217,281)(218,280)(219,279)
(220,278)(221,277)(222,276)(223,275)(224,274)(225,273)(226,272)(227,271)
(228,270)(229,269)(230,268)(231,267)(232,266)(233,265)(234,264)(235,263)
(236,262)(237,261)(238,260)(239,259)(240,258)(241,257)(242,256)(243,255)
(244,254)(245,253);;
s1 := ( 1,204)( 2,210)( 3,209)( 4,208)( 5,207)( 6,206)( 7,205)( 8,197)
( 9,203)( 10,202)( 11,201)( 12,200)( 13,199)( 14,198)( 15,245)( 16,244)
( 17,243)( 18,242)( 19,241)( 20,240)( 21,239)( 22,238)( 23,237)( 24,236)
( 25,235)( 26,234)( 27,233)( 28,232)( 29,231)( 30,230)( 31,229)( 32,228)
( 33,227)( 34,226)( 35,225)( 36,224)( 37,223)( 38,222)( 39,221)( 40,220)
( 41,219)( 42,218)( 43,217)( 44,216)( 45,215)( 46,214)( 47,213)( 48,212)
( 49,211)( 50,155)( 51,161)( 52,160)( 53,159)( 54,158)( 55,157)( 56,156)
( 57,148)( 58,154)( 59,153)( 60,152)( 61,151)( 62,150)( 63,149)( 64,196)
( 65,195)( 66,194)( 67,193)( 68,192)( 69,191)( 70,190)( 71,189)( 72,188)
( 73,187)( 74,186)( 75,185)( 76,184)( 77,183)( 78,182)( 79,181)( 80,180)
( 81,179)( 82,178)( 83,177)( 84,176)( 85,175)( 86,174)( 87,173)( 88,172)
( 89,171)( 90,170)( 91,169)( 92,168)( 93,167)( 94,166)( 95,165)( 96,164)
( 97,163)( 98,162)( 99,253)(100,259)(101,258)(102,257)(103,256)(104,255)
(105,254)(106,246)(107,252)(108,251)(109,250)(110,249)(111,248)(112,247)
(113,294)(114,293)(115,292)(116,291)(117,290)(118,289)(119,288)(120,287)
(121,286)(122,285)(123,284)(124,283)(125,282)(126,281)(127,280)(128,279)
(129,278)(130,277)(131,276)(132,275)(133,274)(134,273)(135,272)(136,271)
(137,270)(138,269)(139,268)(140,267)(141,266)(142,265)(143,264)(144,263)
(145,262)(146,261)(147,260);;
s2 := (295,296);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(296)!( 2, 7)( 3, 6)( 4, 5)( 8, 49)( 9, 48)( 10, 47)( 11, 46)
( 12, 45)( 13, 44)( 14, 43)( 15, 42)( 16, 41)( 17, 40)( 18, 39)( 19, 38)
( 20, 37)( 21, 36)( 22, 35)( 23, 34)( 24, 33)( 25, 32)( 26, 31)( 27, 30)
( 28, 29)( 50, 99)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,100)
( 57,147)( 58,146)( 59,145)( 60,144)( 61,143)( 62,142)( 63,141)( 64,140)
( 65,139)( 66,138)( 67,137)( 68,136)( 69,135)( 70,134)( 71,133)( 72,132)
( 73,131)( 74,130)( 75,129)( 76,128)( 77,127)( 78,126)( 79,125)( 80,124)
( 81,123)( 82,122)( 83,121)( 84,120)( 85,119)( 86,118)( 87,117)( 88,116)
( 89,115)( 90,114)( 91,113)( 92,112)( 93,111)( 94,110)( 95,109)( 96,108)
( 97,107)( 98,106)(149,154)(150,153)(151,152)(155,196)(156,195)(157,194)
(158,193)(159,192)(160,191)(161,190)(162,189)(163,188)(164,187)(165,186)
(166,185)(167,184)(168,183)(169,182)(170,181)(171,180)(172,179)(173,178)
(174,177)(175,176)(197,246)(198,252)(199,251)(200,250)(201,249)(202,248)
(203,247)(204,294)(205,293)(206,292)(207,291)(208,290)(209,289)(210,288)
(211,287)(212,286)(213,285)(214,284)(215,283)(216,282)(217,281)(218,280)
(219,279)(220,278)(221,277)(222,276)(223,275)(224,274)(225,273)(226,272)
(227,271)(228,270)(229,269)(230,268)(231,267)(232,266)(233,265)(234,264)
(235,263)(236,262)(237,261)(238,260)(239,259)(240,258)(241,257)(242,256)
(243,255)(244,254)(245,253);
s1 := Sym(296)!( 1,204)( 2,210)( 3,209)( 4,208)( 5,207)( 6,206)( 7,205)
( 8,197)( 9,203)( 10,202)( 11,201)( 12,200)( 13,199)( 14,198)( 15,245)
( 16,244)( 17,243)( 18,242)( 19,241)( 20,240)( 21,239)( 22,238)( 23,237)
( 24,236)( 25,235)( 26,234)( 27,233)( 28,232)( 29,231)( 30,230)( 31,229)
( 32,228)( 33,227)( 34,226)( 35,225)( 36,224)( 37,223)( 38,222)( 39,221)
( 40,220)( 41,219)( 42,218)( 43,217)( 44,216)( 45,215)( 46,214)( 47,213)
( 48,212)( 49,211)( 50,155)( 51,161)( 52,160)( 53,159)( 54,158)( 55,157)
( 56,156)( 57,148)( 58,154)( 59,153)( 60,152)( 61,151)( 62,150)( 63,149)
( 64,196)( 65,195)( 66,194)( 67,193)( 68,192)( 69,191)( 70,190)( 71,189)
( 72,188)( 73,187)( 74,186)( 75,185)( 76,184)( 77,183)( 78,182)( 79,181)
( 80,180)( 81,179)( 82,178)( 83,177)( 84,176)( 85,175)( 86,174)( 87,173)
( 88,172)( 89,171)( 90,170)( 91,169)( 92,168)( 93,167)( 94,166)( 95,165)
( 96,164)( 97,163)( 98,162)( 99,253)(100,259)(101,258)(102,257)(103,256)
(104,255)(105,254)(106,246)(107,252)(108,251)(109,250)(110,249)(111,248)
(112,247)(113,294)(114,293)(115,292)(116,291)(117,290)(118,289)(119,288)
(120,287)(121,286)(122,285)(123,284)(124,283)(125,282)(126,281)(127,280)
(128,279)(129,278)(130,277)(131,276)(132,275)(133,274)(134,273)(135,272)
(136,271)(137,270)(138,269)(139,268)(140,267)(141,266)(142,265)(143,264)
(144,263)(145,262)(146,261)(147,260);
s2 := Sym(296)!(295,296);
poly := sub<Sym(296)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope