include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,30}*1200a
if this polytope has a name.
Group : SmallGroup(1200,637)
Rank : 3
Schlafli Type : {20,30}
Number of vertices, edges, etc : 20, 300, 30
Order of s0s1s2 : 60
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,30}*600a
3-fold quotients : {20,10}*400b
5-fold quotients : {20,6}*240a
6-fold quotients : {10,10}*200c
10-fold quotients : {10,6}*120
12-fold quotients : {5,10}*100
15-fold quotients : {20,2}*80
25-fold quotients : {4,6}*48a
30-fold quotients : {10,2}*40
50-fold quotients : {2,6}*24
60-fold quotients : {5,2}*20
75-fold quotients : {4,2}*16
100-fold quotients : {2,3}*12
150-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,301)( 2,305)( 3,304)( 4,303)( 5,302)( 6,321)( 7,325)( 8,324)
( 9,323)( 10,322)( 11,316)( 12,320)( 13,319)( 14,318)( 15,317)( 16,311)
( 17,315)( 18,314)( 19,313)( 20,312)( 21,306)( 22,310)( 23,309)( 24,308)
( 25,307)( 26,326)( 27,330)( 28,329)( 29,328)( 30,327)( 31,346)( 32,350)
( 33,349)( 34,348)( 35,347)( 36,341)( 37,345)( 38,344)( 39,343)( 40,342)
( 41,336)( 42,340)( 43,339)( 44,338)( 45,337)( 46,331)( 47,335)( 48,334)
( 49,333)( 50,332)( 51,351)( 52,355)( 53,354)( 54,353)( 55,352)( 56,371)
( 57,375)( 58,374)( 59,373)( 60,372)( 61,366)( 62,370)( 63,369)( 64,368)
( 65,367)( 66,361)( 67,365)( 68,364)( 69,363)( 70,362)( 71,356)( 72,360)
( 73,359)( 74,358)( 75,357)( 76,376)( 77,380)( 78,379)( 79,378)( 80,377)
( 81,396)( 82,400)( 83,399)( 84,398)( 85,397)( 86,391)( 87,395)( 88,394)
( 89,393)( 90,392)( 91,386)( 92,390)( 93,389)( 94,388)( 95,387)( 96,381)
( 97,385)( 98,384)( 99,383)(100,382)(101,401)(102,405)(103,404)(104,403)
(105,402)(106,421)(107,425)(108,424)(109,423)(110,422)(111,416)(112,420)
(113,419)(114,418)(115,417)(116,411)(117,415)(118,414)(119,413)(120,412)
(121,406)(122,410)(123,409)(124,408)(125,407)(126,426)(127,430)(128,429)
(129,428)(130,427)(131,446)(132,450)(133,449)(134,448)(135,447)(136,441)
(137,445)(138,444)(139,443)(140,442)(141,436)(142,440)(143,439)(144,438)
(145,437)(146,431)(147,435)(148,434)(149,433)(150,432)(151,526)(152,530)
(153,529)(154,528)(155,527)(156,546)(157,550)(158,549)(159,548)(160,547)
(161,541)(162,545)(163,544)(164,543)(165,542)(166,536)(167,540)(168,539)
(169,538)(170,537)(171,531)(172,535)(173,534)(174,533)(175,532)(176,551)
(177,555)(178,554)(179,553)(180,552)(181,571)(182,575)(183,574)(184,573)
(185,572)(186,566)(187,570)(188,569)(189,568)(190,567)(191,561)(192,565)
(193,564)(194,563)(195,562)(196,556)(197,560)(198,559)(199,558)(200,557)
(201,576)(202,580)(203,579)(204,578)(205,577)(206,596)(207,600)(208,599)
(209,598)(210,597)(211,591)(212,595)(213,594)(214,593)(215,592)(216,586)
(217,590)(218,589)(219,588)(220,587)(221,581)(222,585)(223,584)(224,583)
(225,582)(226,451)(227,455)(228,454)(229,453)(230,452)(231,471)(232,475)
(233,474)(234,473)(235,472)(236,466)(237,470)(238,469)(239,468)(240,467)
(241,461)(242,465)(243,464)(244,463)(245,462)(246,456)(247,460)(248,459)
(249,458)(250,457)(251,476)(252,480)(253,479)(254,478)(255,477)(256,496)
(257,500)(258,499)(259,498)(260,497)(261,491)(262,495)(263,494)(264,493)
(265,492)(266,486)(267,490)(268,489)(269,488)(270,487)(271,481)(272,485)
(273,484)(274,483)(275,482)(276,501)(277,505)(278,504)(279,503)(280,502)
(281,521)(282,525)(283,524)(284,523)(285,522)(286,516)(287,520)(288,519)
(289,518)(290,517)(291,511)(292,515)(293,514)(294,513)(295,512)(296,506)
(297,510)(298,509)(299,508)(300,507);;
s1 := ( 1,457)( 2,456)( 3,460)( 4,459)( 5,458)( 6,452)( 7,451)( 8,455)
( 9,454)( 10,453)( 11,472)( 12,471)( 13,475)( 14,474)( 15,473)( 16,467)
( 17,466)( 18,470)( 19,469)( 20,468)( 21,462)( 22,461)( 23,465)( 24,464)
( 25,463)( 26,507)( 27,506)( 28,510)( 29,509)( 30,508)( 31,502)( 32,501)
( 33,505)( 34,504)( 35,503)( 36,522)( 37,521)( 38,525)( 39,524)( 40,523)
( 41,517)( 42,516)( 43,520)( 44,519)( 45,518)( 46,512)( 47,511)( 48,515)
( 49,514)( 50,513)( 51,482)( 52,481)( 53,485)( 54,484)( 55,483)( 56,477)
( 57,476)( 58,480)( 59,479)( 60,478)( 61,497)( 62,496)( 63,500)( 64,499)
( 65,498)( 66,492)( 67,491)( 68,495)( 69,494)( 70,493)( 71,487)( 72,486)
( 73,490)( 74,489)( 75,488)( 76,532)( 77,531)( 78,535)( 79,534)( 80,533)
( 81,527)( 82,526)( 83,530)( 84,529)( 85,528)( 86,547)( 87,546)( 88,550)
( 89,549)( 90,548)( 91,542)( 92,541)( 93,545)( 94,544)( 95,543)( 96,537)
( 97,536)( 98,540)( 99,539)(100,538)(101,582)(102,581)(103,585)(104,584)
(105,583)(106,577)(107,576)(108,580)(109,579)(110,578)(111,597)(112,596)
(113,600)(114,599)(115,598)(116,592)(117,591)(118,595)(119,594)(120,593)
(121,587)(122,586)(123,590)(124,589)(125,588)(126,557)(127,556)(128,560)
(129,559)(130,558)(131,552)(132,551)(133,555)(134,554)(135,553)(136,572)
(137,571)(138,575)(139,574)(140,573)(141,567)(142,566)(143,570)(144,569)
(145,568)(146,562)(147,561)(148,565)(149,564)(150,563)(151,307)(152,306)
(153,310)(154,309)(155,308)(156,302)(157,301)(158,305)(159,304)(160,303)
(161,322)(162,321)(163,325)(164,324)(165,323)(166,317)(167,316)(168,320)
(169,319)(170,318)(171,312)(172,311)(173,315)(174,314)(175,313)(176,357)
(177,356)(178,360)(179,359)(180,358)(181,352)(182,351)(183,355)(184,354)
(185,353)(186,372)(187,371)(188,375)(189,374)(190,373)(191,367)(192,366)
(193,370)(194,369)(195,368)(196,362)(197,361)(198,365)(199,364)(200,363)
(201,332)(202,331)(203,335)(204,334)(205,333)(206,327)(207,326)(208,330)
(209,329)(210,328)(211,347)(212,346)(213,350)(214,349)(215,348)(216,342)
(217,341)(218,345)(219,344)(220,343)(221,337)(222,336)(223,340)(224,339)
(225,338)(226,382)(227,381)(228,385)(229,384)(230,383)(231,377)(232,376)
(233,380)(234,379)(235,378)(236,397)(237,396)(238,400)(239,399)(240,398)
(241,392)(242,391)(243,395)(244,394)(245,393)(246,387)(247,386)(248,390)
(249,389)(250,388)(251,432)(252,431)(253,435)(254,434)(255,433)(256,427)
(257,426)(258,430)(259,429)(260,428)(261,447)(262,446)(263,450)(264,449)
(265,448)(266,442)(267,441)(268,445)(269,444)(270,443)(271,437)(272,436)
(273,440)(274,439)(275,438)(276,407)(277,406)(278,410)(279,409)(280,408)
(281,402)(282,401)(283,405)(284,404)(285,403)(286,422)(287,421)(288,425)
(289,424)(290,423)(291,417)(292,416)(293,420)(294,419)(295,418)(296,412)
(297,411)(298,415)(299,414)(300,413);;
s2 := ( 1,476)( 2,480)( 3,479)( 4,478)( 5,477)( 6,481)( 7,485)( 8,484)
( 9,483)( 10,482)( 11,486)( 12,490)( 13,489)( 14,488)( 15,487)( 16,491)
( 17,495)( 18,494)( 19,493)( 20,492)( 21,496)( 22,500)( 23,499)( 24,498)
( 25,497)( 26,451)( 27,455)( 28,454)( 29,453)( 30,452)( 31,456)( 32,460)
( 33,459)( 34,458)( 35,457)( 36,461)( 37,465)( 38,464)( 39,463)( 40,462)
( 41,466)( 42,470)( 43,469)( 44,468)( 45,467)( 46,471)( 47,475)( 48,474)
( 49,473)( 50,472)( 51,501)( 52,505)( 53,504)( 54,503)( 55,502)( 56,506)
( 57,510)( 58,509)( 59,508)( 60,507)( 61,511)( 62,515)( 63,514)( 64,513)
( 65,512)( 66,516)( 67,520)( 68,519)( 69,518)( 70,517)( 71,521)( 72,525)
( 73,524)( 74,523)( 75,522)( 76,551)( 77,555)( 78,554)( 79,553)( 80,552)
( 81,556)( 82,560)( 83,559)( 84,558)( 85,557)( 86,561)( 87,565)( 88,564)
( 89,563)( 90,562)( 91,566)( 92,570)( 93,569)( 94,568)( 95,567)( 96,571)
( 97,575)( 98,574)( 99,573)(100,572)(101,526)(102,530)(103,529)(104,528)
(105,527)(106,531)(107,535)(108,534)(109,533)(110,532)(111,536)(112,540)
(113,539)(114,538)(115,537)(116,541)(117,545)(118,544)(119,543)(120,542)
(121,546)(122,550)(123,549)(124,548)(125,547)(126,576)(127,580)(128,579)
(129,578)(130,577)(131,581)(132,585)(133,584)(134,583)(135,582)(136,586)
(137,590)(138,589)(139,588)(140,587)(141,591)(142,595)(143,594)(144,593)
(145,592)(146,596)(147,600)(148,599)(149,598)(150,597)(151,401)(152,405)
(153,404)(154,403)(155,402)(156,406)(157,410)(158,409)(159,408)(160,407)
(161,411)(162,415)(163,414)(164,413)(165,412)(166,416)(167,420)(168,419)
(169,418)(170,417)(171,421)(172,425)(173,424)(174,423)(175,422)(176,376)
(177,380)(178,379)(179,378)(180,377)(181,381)(182,385)(183,384)(184,383)
(185,382)(186,386)(187,390)(188,389)(189,388)(190,387)(191,391)(192,395)
(193,394)(194,393)(195,392)(196,396)(197,400)(198,399)(199,398)(200,397)
(201,426)(202,430)(203,429)(204,428)(205,427)(206,431)(207,435)(208,434)
(209,433)(210,432)(211,436)(212,440)(213,439)(214,438)(215,437)(216,441)
(217,445)(218,444)(219,443)(220,442)(221,446)(222,450)(223,449)(224,448)
(225,447)(226,326)(227,330)(228,329)(229,328)(230,327)(231,331)(232,335)
(233,334)(234,333)(235,332)(236,336)(237,340)(238,339)(239,338)(240,337)
(241,341)(242,345)(243,344)(244,343)(245,342)(246,346)(247,350)(248,349)
(249,348)(250,347)(251,301)(252,305)(253,304)(254,303)(255,302)(256,306)
(257,310)(258,309)(259,308)(260,307)(261,311)(262,315)(263,314)(264,313)
(265,312)(266,316)(267,320)(268,319)(269,318)(270,317)(271,321)(272,325)
(273,324)(274,323)(275,322)(276,351)(277,355)(278,354)(279,353)(280,352)
(281,356)(282,360)(283,359)(284,358)(285,357)(286,361)(287,365)(288,364)
(289,363)(290,362)(291,366)(292,370)(293,369)(294,368)(295,367)(296,371)
(297,375)(298,374)(299,373)(300,372);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(600)!( 1,301)( 2,305)( 3,304)( 4,303)( 5,302)( 6,321)( 7,325)
( 8,324)( 9,323)( 10,322)( 11,316)( 12,320)( 13,319)( 14,318)( 15,317)
( 16,311)( 17,315)( 18,314)( 19,313)( 20,312)( 21,306)( 22,310)( 23,309)
( 24,308)( 25,307)( 26,326)( 27,330)( 28,329)( 29,328)( 30,327)( 31,346)
( 32,350)( 33,349)( 34,348)( 35,347)( 36,341)( 37,345)( 38,344)( 39,343)
( 40,342)( 41,336)( 42,340)( 43,339)( 44,338)( 45,337)( 46,331)( 47,335)
( 48,334)( 49,333)( 50,332)( 51,351)( 52,355)( 53,354)( 54,353)( 55,352)
( 56,371)( 57,375)( 58,374)( 59,373)( 60,372)( 61,366)( 62,370)( 63,369)
( 64,368)( 65,367)( 66,361)( 67,365)( 68,364)( 69,363)( 70,362)( 71,356)
( 72,360)( 73,359)( 74,358)( 75,357)( 76,376)( 77,380)( 78,379)( 79,378)
( 80,377)( 81,396)( 82,400)( 83,399)( 84,398)( 85,397)( 86,391)( 87,395)
( 88,394)( 89,393)( 90,392)( 91,386)( 92,390)( 93,389)( 94,388)( 95,387)
( 96,381)( 97,385)( 98,384)( 99,383)(100,382)(101,401)(102,405)(103,404)
(104,403)(105,402)(106,421)(107,425)(108,424)(109,423)(110,422)(111,416)
(112,420)(113,419)(114,418)(115,417)(116,411)(117,415)(118,414)(119,413)
(120,412)(121,406)(122,410)(123,409)(124,408)(125,407)(126,426)(127,430)
(128,429)(129,428)(130,427)(131,446)(132,450)(133,449)(134,448)(135,447)
(136,441)(137,445)(138,444)(139,443)(140,442)(141,436)(142,440)(143,439)
(144,438)(145,437)(146,431)(147,435)(148,434)(149,433)(150,432)(151,526)
(152,530)(153,529)(154,528)(155,527)(156,546)(157,550)(158,549)(159,548)
(160,547)(161,541)(162,545)(163,544)(164,543)(165,542)(166,536)(167,540)
(168,539)(169,538)(170,537)(171,531)(172,535)(173,534)(174,533)(175,532)
(176,551)(177,555)(178,554)(179,553)(180,552)(181,571)(182,575)(183,574)
(184,573)(185,572)(186,566)(187,570)(188,569)(189,568)(190,567)(191,561)
(192,565)(193,564)(194,563)(195,562)(196,556)(197,560)(198,559)(199,558)
(200,557)(201,576)(202,580)(203,579)(204,578)(205,577)(206,596)(207,600)
(208,599)(209,598)(210,597)(211,591)(212,595)(213,594)(214,593)(215,592)
(216,586)(217,590)(218,589)(219,588)(220,587)(221,581)(222,585)(223,584)
(224,583)(225,582)(226,451)(227,455)(228,454)(229,453)(230,452)(231,471)
(232,475)(233,474)(234,473)(235,472)(236,466)(237,470)(238,469)(239,468)
(240,467)(241,461)(242,465)(243,464)(244,463)(245,462)(246,456)(247,460)
(248,459)(249,458)(250,457)(251,476)(252,480)(253,479)(254,478)(255,477)
(256,496)(257,500)(258,499)(259,498)(260,497)(261,491)(262,495)(263,494)
(264,493)(265,492)(266,486)(267,490)(268,489)(269,488)(270,487)(271,481)
(272,485)(273,484)(274,483)(275,482)(276,501)(277,505)(278,504)(279,503)
(280,502)(281,521)(282,525)(283,524)(284,523)(285,522)(286,516)(287,520)
(288,519)(289,518)(290,517)(291,511)(292,515)(293,514)(294,513)(295,512)
(296,506)(297,510)(298,509)(299,508)(300,507);
s1 := Sym(600)!( 1,457)( 2,456)( 3,460)( 4,459)( 5,458)( 6,452)( 7,451)
( 8,455)( 9,454)( 10,453)( 11,472)( 12,471)( 13,475)( 14,474)( 15,473)
( 16,467)( 17,466)( 18,470)( 19,469)( 20,468)( 21,462)( 22,461)( 23,465)
( 24,464)( 25,463)( 26,507)( 27,506)( 28,510)( 29,509)( 30,508)( 31,502)
( 32,501)( 33,505)( 34,504)( 35,503)( 36,522)( 37,521)( 38,525)( 39,524)
( 40,523)( 41,517)( 42,516)( 43,520)( 44,519)( 45,518)( 46,512)( 47,511)
( 48,515)( 49,514)( 50,513)( 51,482)( 52,481)( 53,485)( 54,484)( 55,483)
( 56,477)( 57,476)( 58,480)( 59,479)( 60,478)( 61,497)( 62,496)( 63,500)
( 64,499)( 65,498)( 66,492)( 67,491)( 68,495)( 69,494)( 70,493)( 71,487)
( 72,486)( 73,490)( 74,489)( 75,488)( 76,532)( 77,531)( 78,535)( 79,534)
( 80,533)( 81,527)( 82,526)( 83,530)( 84,529)( 85,528)( 86,547)( 87,546)
( 88,550)( 89,549)( 90,548)( 91,542)( 92,541)( 93,545)( 94,544)( 95,543)
( 96,537)( 97,536)( 98,540)( 99,539)(100,538)(101,582)(102,581)(103,585)
(104,584)(105,583)(106,577)(107,576)(108,580)(109,579)(110,578)(111,597)
(112,596)(113,600)(114,599)(115,598)(116,592)(117,591)(118,595)(119,594)
(120,593)(121,587)(122,586)(123,590)(124,589)(125,588)(126,557)(127,556)
(128,560)(129,559)(130,558)(131,552)(132,551)(133,555)(134,554)(135,553)
(136,572)(137,571)(138,575)(139,574)(140,573)(141,567)(142,566)(143,570)
(144,569)(145,568)(146,562)(147,561)(148,565)(149,564)(150,563)(151,307)
(152,306)(153,310)(154,309)(155,308)(156,302)(157,301)(158,305)(159,304)
(160,303)(161,322)(162,321)(163,325)(164,324)(165,323)(166,317)(167,316)
(168,320)(169,319)(170,318)(171,312)(172,311)(173,315)(174,314)(175,313)
(176,357)(177,356)(178,360)(179,359)(180,358)(181,352)(182,351)(183,355)
(184,354)(185,353)(186,372)(187,371)(188,375)(189,374)(190,373)(191,367)
(192,366)(193,370)(194,369)(195,368)(196,362)(197,361)(198,365)(199,364)
(200,363)(201,332)(202,331)(203,335)(204,334)(205,333)(206,327)(207,326)
(208,330)(209,329)(210,328)(211,347)(212,346)(213,350)(214,349)(215,348)
(216,342)(217,341)(218,345)(219,344)(220,343)(221,337)(222,336)(223,340)
(224,339)(225,338)(226,382)(227,381)(228,385)(229,384)(230,383)(231,377)
(232,376)(233,380)(234,379)(235,378)(236,397)(237,396)(238,400)(239,399)
(240,398)(241,392)(242,391)(243,395)(244,394)(245,393)(246,387)(247,386)
(248,390)(249,389)(250,388)(251,432)(252,431)(253,435)(254,434)(255,433)
(256,427)(257,426)(258,430)(259,429)(260,428)(261,447)(262,446)(263,450)
(264,449)(265,448)(266,442)(267,441)(268,445)(269,444)(270,443)(271,437)
(272,436)(273,440)(274,439)(275,438)(276,407)(277,406)(278,410)(279,409)
(280,408)(281,402)(282,401)(283,405)(284,404)(285,403)(286,422)(287,421)
(288,425)(289,424)(290,423)(291,417)(292,416)(293,420)(294,419)(295,418)
(296,412)(297,411)(298,415)(299,414)(300,413);
s2 := Sym(600)!( 1,476)( 2,480)( 3,479)( 4,478)( 5,477)( 6,481)( 7,485)
( 8,484)( 9,483)( 10,482)( 11,486)( 12,490)( 13,489)( 14,488)( 15,487)
( 16,491)( 17,495)( 18,494)( 19,493)( 20,492)( 21,496)( 22,500)( 23,499)
( 24,498)( 25,497)( 26,451)( 27,455)( 28,454)( 29,453)( 30,452)( 31,456)
( 32,460)( 33,459)( 34,458)( 35,457)( 36,461)( 37,465)( 38,464)( 39,463)
( 40,462)( 41,466)( 42,470)( 43,469)( 44,468)( 45,467)( 46,471)( 47,475)
( 48,474)( 49,473)( 50,472)( 51,501)( 52,505)( 53,504)( 54,503)( 55,502)
( 56,506)( 57,510)( 58,509)( 59,508)( 60,507)( 61,511)( 62,515)( 63,514)
( 64,513)( 65,512)( 66,516)( 67,520)( 68,519)( 69,518)( 70,517)( 71,521)
( 72,525)( 73,524)( 74,523)( 75,522)( 76,551)( 77,555)( 78,554)( 79,553)
( 80,552)( 81,556)( 82,560)( 83,559)( 84,558)( 85,557)( 86,561)( 87,565)
( 88,564)( 89,563)( 90,562)( 91,566)( 92,570)( 93,569)( 94,568)( 95,567)
( 96,571)( 97,575)( 98,574)( 99,573)(100,572)(101,526)(102,530)(103,529)
(104,528)(105,527)(106,531)(107,535)(108,534)(109,533)(110,532)(111,536)
(112,540)(113,539)(114,538)(115,537)(116,541)(117,545)(118,544)(119,543)
(120,542)(121,546)(122,550)(123,549)(124,548)(125,547)(126,576)(127,580)
(128,579)(129,578)(130,577)(131,581)(132,585)(133,584)(134,583)(135,582)
(136,586)(137,590)(138,589)(139,588)(140,587)(141,591)(142,595)(143,594)
(144,593)(145,592)(146,596)(147,600)(148,599)(149,598)(150,597)(151,401)
(152,405)(153,404)(154,403)(155,402)(156,406)(157,410)(158,409)(159,408)
(160,407)(161,411)(162,415)(163,414)(164,413)(165,412)(166,416)(167,420)
(168,419)(169,418)(170,417)(171,421)(172,425)(173,424)(174,423)(175,422)
(176,376)(177,380)(178,379)(179,378)(180,377)(181,381)(182,385)(183,384)
(184,383)(185,382)(186,386)(187,390)(188,389)(189,388)(190,387)(191,391)
(192,395)(193,394)(194,393)(195,392)(196,396)(197,400)(198,399)(199,398)
(200,397)(201,426)(202,430)(203,429)(204,428)(205,427)(206,431)(207,435)
(208,434)(209,433)(210,432)(211,436)(212,440)(213,439)(214,438)(215,437)
(216,441)(217,445)(218,444)(219,443)(220,442)(221,446)(222,450)(223,449)
(224,448)(225,447)(226,326)(227,330)(228,329)(229,328)(230,327)(231,331)
(232,335)(233,334)(234,333)(235,332)(236,336)(237,340)(238,339)(239,338)
(240,337)(241,341)(242,345)(243,344)(244,343)(245,342)(246,346)(247,350)
(248,349)(249,348)(250,347)(251,301)(252,305)(253,304)(254,303)(255,302)
(256,306)(257,310)(258,309)(259,308)(260,307)(261,311)(262,315)(263,314)
(264,313)(265,312)(266,316)(267,320)(268,319)(269,318)(270,317)(271,321)
(272,325)(273,324)(274,323)(275,322)(276,351)(277,355)(278,354)(279,353)
(280,352)(281,356)(282,360)(283,359)(284,358)(285,357)(286,361)(287,365)
(288,364)(289,363)(290,362)(291,366)(292,370)(293,369)(294,368)(295,367)
(296,371)(297,375)(298,374)(299,373)(300,372);
poly := sub<Sym(600)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope