include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,20}*1200a
if this polytope has a name.
Group : SmallGroup(1200,637)
Rank : 3
Schlafli Type : {30,20}
Number of vertices, edges, etc : 30, 300, 20
Order of s0s1s2 : 60
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {30,10}*600a
3-fold quotients : {10,20}*400b
5-fold quotients : {6,20}*240a
6-fold quotients : {10,10}*200b
10-fold quotients : {6,10}*120
12-fold quotients : {10,5}*100
15-fold quotients : {2,20}*80
25-fold quotients : {6,4}*48a
30-fold quotients : {2,10}*40
50-fold quotients : {6,2}*24
60-fold quotients : {2,5}*20
75-fold quotients : {2,4}*16
100-fold quotients : {3,2}*12
150-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,451)( 2,455)( 3,454)( 4,453)( 5,452)( 6,456)( 7,460)( 8,459)
( 9,458)( 10,457)( 11,461)( 12,465)( 13,464)( 14,463)( 15,462)( 16,466)
( 17,470)( 18,469)( 19,468)( 20,467)( 21,471)( 22,475)( 23,474)( 24,473)
( 25,472)( 26,501)( 27,505)( 28,504)( 29,503)( 30,502)( 31,506)( 32,510)
( 33,509)( 34,508)( 35,507)( 36,511)( 37,515)( 38,514)( 39,513)( 40,512)
( 41,516)( 42,520)( 43,519)( 44,518)( 45,517)( 46,521)( 47,525)( 48,524)
( 49,523)( 50,522)( 51,476)( 52,480)( 53,479)( 54,478)( 55,477)( 56,481)
( 57,485)( 58,484)( 59,483)( 60,482)( 61,486)( 62,490)( 63,489)( 64,488)
( 65,487)( 66,491)( 67,495)( 68,494)( 69,493)( 70,492)( 71,496)( 72,500)
( 73,499)( 74,498)( 75,497)( 76,526)( 77,530)( 78,529)( 79,528)( 80,527)
( 81,531)( 82,535)( 83,534)( 84,533)( 85,532)( 86,536)( 87,540)( 88,539)
( 89,538)( 90,537)( 91,541)( 92,545)( 93,544)( 94,543)( 95,542)( 96,546)
( 97,550)( 98,549)( 99,548)(100,547)(101,576)(102,580)(103,579)(104,578)
(105,577)(106,581)(107,585)(108,584)(109,583)(110,582)(111,586)(112,590)
(113,589)(114,588)(115,587)(116,591)(117,595)(118,594)(119,593)(120,592)
(121,596)(122,600)(123,599)(124,598)(125,597)(126,551)(127,555)(128,554)
(129,553)(130,552)(131,556)(132,560)(133,559)(134,558)(135,557)(136,561)
(137,565)(138,564)(139,563)(140,562)(141,566)(142,570)(143,569)(144,568)
(145,567)(146,571)(147,575)(148,574)(149,573)(150,572)(151,376)(152,380)
(153,379)(154,378)(155,377)(156,381)(157,385)(158,384)(159,383)(160,382)
(161,386)(162,390)(163,389)(164,388)(165,387)(166,391)(167,395)(168,394)
(169,393)(170,392)(171,396)(172,400)(173,399)(174,398)(175,397)(176,426)
(177,430)(178,429)(179,428)(180,427)(181,431)(182,435)(183,434)(184,433)
(185,432)(186,436)(187,440)(188,439)(189,438)(190,437)(191,441)(192,445)
(193,444)(194,443)(195,442)(196,446)(197,450)(198,449)(199,448)(200,447)
(201,401)(202,405)(203,404)(204,403)(205,402)(206,406)(207,410)(208,409)
(209,408)(210,407)(211,411)(212,415)(213,414)(214,413)(215,412)(216,416)
(217,420)(218,419)(219,418)(220,417)(221,421)(222,425)(223,424)(224,423)
(225,422)(226,301)(227,305)(228,304)(229,303)(230,302)(231,306)(232,310)
(233,309)(234,308)(235,307)(236,311)(237,315)(238,314)(239,313)(240,312)
(241,316)(242,320)(243,319)(244,318)(245,317)(246,321)(247,325)(248,324)
(249,323)(250,322)(251,351)(252,355)(253,354)(254,353)(255,352)(256,356)
(257,360)(258,359)(259,358)(260,357)(261,361)(262,365)(263,364)(264,363)
(265,362)(266,366)(267,370)(268,369)(269,368)(270,367)(271,371)(272,375)
(273,374)(274,373)(275,372)(276,326)(277,330)(278,329)(279,328)(280,327)
(281,331)(282,335)(283,334)(284,333)(285,332)(286,336)(287,340)(288,339)
(289,338)(290,337)(291,341)(292,345)(293,344)(294,343)(295,342)(296,346)
(297,350)(298,349)(299,348)(300,347);;
s1 := ( 1,477)( 2,476)( 3,480)( 4,479)( 5,478)( 6,497)( 7,496)( 8,500)
( 9,499)( 10,498)( 11,492)( 12,491)( 13,495)( 14,494)( 15,493)( 16,487)
( 17,486)( 18,490)( 19,489)( 20,488)( 21,482)( 22,481)( 23,485)( 24,484)
( 25,483)( 26,452)( 27,451)( 28,455)( 29,454)( 30,453)( 31,472)( 32,471)
( 33,475)( 34,474)( 35,473)( 36,467)( 37,466)( 38,470)( 39,469)( 40,468)
( 41,462)( 42,461)( 43,465)( 44,464)( 45,463)( 46,457)( 47,456)( 48,460)
( 49,459)( 50,458)( 51,502)( 52,501)( 53,505)( 54,504)( 55,503)( 56,522)
( 57,521)( 58,525)( 59,524)( 60,523)( 61,517)( 62,516)( 63,520)( 64,519)
( 65,518)( 66,512)( 67,511)( 68,515)( 69,514)( 70,513)( 71,507)( 72,506)
( 73,510)( 74,509)( 75,508)( 76,552)( 77,551)( 78,555)( 79,554)( 80,553)
( 81,572)( 82,571)( 83,575)( 84,574)( 85,573)( 86,567)( 87,566)( 88,570)
( 89,569)( 90,568)( 91,562)( 92,561)( 93,565)( 94,564)( 95,563)( 96,557)
( 97,556)( 98,560)( 99,559)(100,558)(101,527)(102,526)(103,530)(104,529)
(105,528)(106,547)(107,546)(108,550)(109,549)(110,548)(111,542)(112,541)
(113,545)(114,544)(115,543)(116,537)(117,536)(118,540)(119,539)(120,538)
(121,532)(122,531)(123,535)(124,534)(125,533)(126,577)(127,576)(128,580)
(129,579)(130,578)(131,597)(132,596)(133,600)(134,599)(135,598)(136,592)
(137,591)(138,595)(139,594)(140,593)(141,587)(142,586)(143,590)(144,589)
(145,588)(146,582)(147,581)(148,585)(149,584)(150,583)(151,327)(152,326)
(153,330)(154,329)(155,328)(156,347)(157,346)(158,350)(159,349)(160,348)
(161,342)(162,341)(163,345)(164,344)(165,343)(166,337)(167,336)(168,340)
(169,339)(170,338)(171,332)(172,331)(173,335)(174,334)(175,333)(176,302)
(177,301)(178,305)(179,304)(180,303)(181,322)(182,321)(183,325)(184,324)
(185,323)(186,317)(187,316)(188,320)(189,319)(190,318)(191,312)(192,311)
(193,315)(194,314)(195,313)(196,307)(197,306)(198,310)(199,309)(200,308)
(201,352)(202,351)(203,355)(204,354)(205,353)(206,372)(207,371)(208,375)
(209,374)(210,373)(211,367)(212,366)(213,370)(214,369)(215,368)(216,362)
(217,361)(218,365)(219,364)(220,363)(221,357)(222,356)(223,360)(224,359)
(225,358)(226,402)(227,401)(228,405)(229,404)(230,403)(231,422)(232,421)
(233,425)(234,424)(235,423)(236,417)(237,416)(238,420)(239,419)(240,418)
(241,412)(242,411)(243,415)(244,414)(245,413)(246,407)(247,406)(248,410)
(249,409)(250,408)(251,377)(252,376)(253,380)(254,379)(255,378)(256,397)
(257,396)(258,400)(259,399)(260,398)(261,392)(262,391)(263,395)(264,394)
(265,393)(266,387)(267,386)(268,390)(269,389)(270,388)(271,382)(272,381)
(273,385)(274,384)(275,383)(276,427)(277,426)(278,430)(279,429)(280,428)
(281,447)(282,446)(283,450)(284,449)(285,448)(286,442)(287,441)(288,445)
(289,444)(290,443)(291,437)(292,436)(293,440)(294,439)(295,438)(296,432)
(297,431)(298,435)(299,434)(300,433);;
s2 := ( 1,306)( 2,310)( 3,309)( 4,308)( 5,307)( 6,301)( 7,305)( 8,304)
( 9,303)( 10,302)( 11,321)( 12,325)( 13,324)( 14,323)( 15,322)( 16,316)
( 17,320)( 18,319)( 19,318)( 20,317)( 21,311)( 22,315)( 23,314)( 24,313)
( 25,312)( 26,331)( 27,335)( 28,334)( 29,333)( 30,332)( 31,326)( 32,330)
( 33,329)( 34,328)( 35,327)( 36,346)( 37,350)( 38,349)( 39,348)( 40,347)
( 41,341)( 42,345)( 43,344)( 44,343)( 45,342)( 46,336)( 47,340)( 48,339)
( 49,338)( 50,337)( 51,356)( 52,360)( 53,359)( 54,358)( 55,357)( 56,351)
( 57,355)( 58,354)( 59,353)( 60,352)( 61,371)( 62,375)( 63,374)( 64,373)
( 65,372)( 66,366)( 67,370)( 68,369)( 69,368)( 70,367)( 71,361)( 72,365)
( 73,364)( 74,363)( 75,362)( 76,381)( 77,385)( 78,384)( 79,383)( 80,382)
( 81,376)( 82,380)( 83,379)( 84,378)( 85,377)( 86,396)( 87,400)( 88,399)
( 89,398)( 90,397)( 91,391)( 92,395)( 93,394)( 94,393)( 95,392)( 96,386)
( 97,390)( 98,389)( 99,388)(100,387)(101,406)(102,410)(103,409)(104,408)
(105,407)(106,401)(107,405)(108,404)(109,403)(110,402)(111,421)(112,425)
(113,424)(114,423)(115,422)(116,416)(117,420)(118,419)(119,418)(120,417)
(121,411)(122,415)(123,414)(124,413)(125,412)(126,431)(127,435)(128,434)
(129,433)(130,432)(131,426)(132,430)(133,429)(134,428)(135,427)(136,446)
(137,450)(138,449)(139,448)(140,447)(141,441)(142,445)(143,444)(144,443)
(145,442)(146,436)(147,440)(148,439)(149,438)(150,437)(151,531)(152,535)
(153,534)(154,533)(155,532)(156,526)(157,530)(158,529)(159,528)(160,527)
(161,546)(162,550)(163,549)(164,548)(165,547)(166,541)(167,545)(168,544)
(169,543)(170,542)(171,536)(172,540)(173,539)(174,538)(175,537)(176,556)
(177,560)(178,559)(179,558)(180,557)(181,551)(182,555)(183,554)(184,553)
(185,552)(186,571)(187,575)(188,574)(189,573)(190,572)(191,566)(192,570)
(193,569)(194,568)(195,567)(196,561)(197,565)(198,564)(199,563)(200,562)
(201,581)(202,585)(203,584)(204,583)(205,582)(206,576)(207,580)(208,579)
(209,578)(210,577)(211,596)(212,600)(213,599)(214,598)(215,597)(216,591)
(217,595)(218,594)(219,593)(220,592)(221,586)(222,590)(223,589)(224,588)
(225,587)(226,456)(227,460)(228,459)(229,458)(230,457)(231,451)(232,455)
(233,454)(234,453)(235,452)(236,471)(237,475)(238,474)(239,473)(240,472)
(241,466)(242,470)(243,469)(244,468)(245,467)(246,461)(247,465)(248,464)
(249,463)(250,462)(251,481)(252,485)(253,484)(254,483)(255,482)(256,476)
(257,480)(258,479)(259,478)(260,477)(261,496)(262,500)(263,499)(264,498)
(265,497)(266,491)(267,495)(268,494)(269,493)(270,492)(271,486)(272,490)
(273,489)(274,488)(275,487)(276,506)(277,510)(278,509)(279,508)(280,507)
(281,501)(282,505)(283,504)(284,503)(285,502)(286,521)(287,525)(288,524)
(289,523)(290,522)(291,516)(292,520)(293,519)(294,518)(295,517)(296,511)
(297,515)(298,514)(299,513)(300,512);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(600)!( 1,451)( 2,455)( 3,454)( 4,453)( 5,452)( 6,456)( 7,460)
( 8,459)( 9,458)( 10,457)( 11,461)( 12,465)( 13,464)( 14,463)( 15,462)
( 16,466)( 17,470)( 18,469)( 19,468)( 20,467)( 21,471)( 22,475)( 23,474)
( 24,473)( 25,472)( 26,501)( 27,505)( 28,504)( 29,503)( 30,502)( 31,506)
( 32,510)( 33,509)( 34,508)( 35,507)( 36,511)( 37,515)( 38,514)( 39,513)
( 40,512)( 41,516)( 42,520)( 43,519)( 44,518)( 45,517)( 46,521)( 47,525)
( 48,524)( 49,523)( 50,522)( 51,476)( 52,480)( 53,479)( 54,478)( 55,477)
( 56,481)( 57,485)( 58,484)( 59,483)( 60,482)( 61,486)( 62,490)( 63,489)
( 64,488)( 65,487)( 66,491)( 67,495)( 68,494)( 69,493)( 70,492)( 71,496)
( 72,500)( 73,499)( 74,498)( 75,497)( 76,526)( 77,530)( 78,529)( 79,528)
( 80,527)( 81,531)( 82,535)( 83,534)( 84,533)( 85,532)( 86,536)( 87,540)
( 88,539)( 89,538)( 90,537)( 91,541)( 92,545)( 93,544)( 94,543)( 95,542)
( 96,546)( 97,550)( 98,549)( 99,548)(100,547)(101,576)(102,580)(103,579)
(104,578)(105,577)(106,581)(107,585)(108,584)(109,583)(110,582)(111,586)
(112,590)(113,589)(114,588)(115,587)(116,591)(117,595)(118,594)(119,593)
(120,592)(121,596)(122,600)(123,599)(124,598)(125,597)(126,551)(127,555)
(128,554)(129,553)(130,552)(131,556)(132,560)(133,559)(134,558)(135,557)
(136,561)(137,565)(138,564)(139,563)(140,562)(141,566)(142,570)(143,569)
(144,568)(145,567)(146,571)(147,575)(148,574)(149,573)(150,572)(151,376)
(152,380)(153,379)(154,378)(155,377)(156,381)(157,385)(158,384)(159,383)
(160,382)(161,386)(162,390)(163,389)(164,388)(165,387)(166,391)(167,395)
(168,394)(169,393)(170,392)(171,396)(172,400)(173,399)(174,398)(175,397)
(176,426)(177,430)(178,429)(179,428)(180,427)(181,431)(182,435)(183,434)
(184,433)(185,432)(186,436)(187,440)(188,439)(189,438)(190,437)(191,441)
(192,445)(193,444)(194,443)(195,442)(196,446)(197,450)(198,449)(199,448)
(200,447)(201,401)(202,405)(203,404)(204,403)(205,402)(206,406)(207,410)
(208,409)(209,408)(210,407)(211,411)(212,415)(213,414)(214,413)(215,412)
(216,416)(217,420)(218,419)(219,418)(220,417)(221,421)(222,425)(223,424)
(224,423)(225,422)(226,301)(227,305)(228,304)(229,303)(230,302)(231,306)
(232,310)(233,309)(234,308)(235,307)(236,311)(237,315)(238,314)(239,313)
(240,312)(241,316)(242,320)(243,319)(244,318)(245,317)(246,321)(247,325)
(248,324)(249,323)(250,322)(251,351)(252,355)(253,354)(254,353)(255,352)
(256,356)(257,360)(258,359)(259,358)(260,357)(261,361)(262,365)(263,364)
(264,363)(265,362)(266,366)(267,370)(268,369)(269,368)(270,367)(271,371)
(272,375)(273,374)(274,373)(275,372)(276,326)(277,330)(278,329)(279,328)
(280,327)(281,331)(282,335)(283,334)(284,333)(285,332)(286,336)(287,340)
(288,339)(289,338)(290,337)(291,341)(292,345)(293,344)(294,343)(295,342)
(296,346)(297,350)(298,349)(299,348)(300,347);
s1 := Sym(600)!( 1,477)( 2,476)( 3,480)( 4,479)( 5,478)( 6,497)( 7,496)
( 8,500)( 9,499)( 10,498)( 11,492)( 12,491)( 13,495)( 14,494)( 15,493)
( 16,487)( 17,486)( 18,490)( 19,489)( 20,488)( 21,482)( 22,481)( 23,485)
( 24,484)( 25,483)( 26,452)( 27,451)( 28,455)( 29,454)( 30,453)( 31,472)
( 32,471)( 33,475)( 34,474)( 35,473)( 36,467)( 37,466)( 38,470)( 39,469)
( 40,468)( 41,462)( 42,461)( 43,465)( 44,464)( 45,463)( 46,457)( 47,456)
( 48,460)( 49,459)( 50,458)( 51,502)( 52,501)( 53,505)( 54,504)( 55,503)
( 56,522)( 57,521)( 58,525)( 59,524)( 60,523)( 61,517)( 62,516)( 63,520)
( 64,519)( 65,518)( 66,512)( 67,511)( 68,515)( 69,514)( 70,513)( 71,507)
( 72,506)( 73,510)( 74,509)( 75,508)( 76,552)( 77,551)( 78,555)( 79,554)
( 80,553)( 81,572)( 82,571)( 83,575)( 84,574)( 85,573)( 86,567)( 87,566)
( 88,570)( 89,569)( 90,568)( 91,562)( 92,561)( 93,565)( 94,564)( 95,563)
( 96,557)( 97,556)( 98,560)( 99,559)(100,558)(101,527)(102,526)(103,530)
(104,529)(105,528)(106,547)(107,546)(108,550)(109,549)(110,548)(111,542)
(112,541)(113,545)(114,544)(115,543)(116,537)(117,536)(118,540)(119,539)
(120,538)(121,532)(122,531)(123,535)(124,534)(125,533)(126,577)(127,576)
(128,580)(129,579)(130,578)(131,597)(132,596)(133,600)(134,599)(135,598)
(136,592)(137,591)(138,595)(139,594)(140,593)(141,587)(142,586)(143,590)
(144,589)(145,588)(146,582)(147,581)(148,585)(149,584)(150,583)(151,327)
(152,326)(153,330)(154,329)(155,328)(156,347)(157,346)(158,350)(159,349)
(160,348)(161,342)(162,341)(163,345)(164,344)(165,343)(166,337)(167,336)
(168,340)(169,339)(170,338)(171,332)(172,331)(173,335)(174,334)(175,333)
(176,302)(177,301)(178,305)(179,304)(180,303)(181,322)(182,321)(183,325)
(184,324)(185,323)(186,317)(187,316)(188,320)(189,319)(190,318)(191,312)
(192,311)(193,315)(194,314)(195,313)(196,307)(197,306)(198,310)(199,309)
(200,308)(201,352)(202,351)(203,355)(204,354)(205,353)(206,372)(207,371)
(208,375)(209,374)(210,373)(211,367)(212,366)(213,370)(214,369)(215,368)
(216,362)(217,361)(218,365)(219,364)(220,363)(221,357)(222,356)(223,360)
(224,359)(225,358)(226,402)(227,401)(228,405)(229,404)(230,403)(231,422)
(232,421)(233,425)(234,424)(235,423)(236,417)(237,416)(238,420)(239,419)
(240,418)(241,412)(242,411)(243,415)(244,414)(245,413)(246,407)(247,406)
(248,410)(249,409)(250,408)(251,377)(252,376)(253,380)(254,379)(255,378)
(256,397)(257,396)(258,400)(259,399)(260,398)(261,392)(262,391)(263,395)
(264,394)(265,393)(266,387)(267,386)(268,390)(269,389)(270,388)(271,382)
(272,381)(273,385)(274,384)(275,383)(276,427)(277,426)(278,430)(279,429)
(280,428)(281,447)(282,446)(283,450)(284,449)(285,448)(286,442)(287,441)
(288,445)(289,444)(290,443)(291,437)(292,436)(293,440)(294,439)(295,438)
(296,432)(297,431)(298,435)(299,434)(300,433);
s2 := Sym(600)!( 1,306)( 2,310)( 3,309)( 4,308)( 5,307)( 6,301)( 7,305)
( 8,304)( 9,303)( 10,302)( 11,321)( 12,325)( 13,324)( 14,323)( 15,322)
( 16,316)( 17,320)( 18,319)( 19,318)( 20,317)( 21,311)( 22,315)( 23,314)
( 24,313)( 25,312)( 26,331)( 27,335)( 28,334)( 29,333)( 30,332)( 31,326)
( 32,330)( 33,329)( 34,328)( 35,327)( 36,346)( 37,350)( 38,349)( 39,348)
( 40,347)( 41,341)( 42,345)( 43,344)( 44,343)( 45,342)( 46,336)( 47,340)
( 48,339)( 49,338)( 50,337)( 51,356)( 52,360)( 53,359)( 54,358)( 55,357)
( 56,351)( 57,355)( 58,354)( 59,353)( 60,352)( 61,371)( 62,375)( 63,374)
( 64,373)( 65,372)( 66,366)( 67,370)( 68,369)( 69,368)( 70,367)( 71,361)
( 72,365)( 73,364)( 74,363)( 75,362)( 76,381)( 77,385)( 78,384)( 79,383)
( 80,382)( 81,376)( 82,380)( 83,379)( 84,378)( 85,377)( 86,396)( 87,400)
( 88,399)( 89,398)( 90,397)( 91,391)( 92,395)( 93,394)( 94,393)( 95,392)
( 96,386)( 97,390)( 98,389)( 99,388)(100,387)(101,406)(102,410)(103,409)
(104,408)(105,407)(106,401)(107,405)(108,404)(109,403)(110,402)(111,421)
(112,425)(113,424)(114,423)(115,422)(116,416)(117,420)(118,419)(119,418)
(120,417)(121,411)(122,415)(123,414)(124,413)(125,412)(126,431)(127,435)
(128,434)(129,433)(130,432)(131,426)(132,430)(133,429)(134,428)(135,427)
(136,446)(137,450)(138,449)(139,448)(140,447)(141,441)(142,445)(143,444)
(144,443)(145,442)(146,436)(147,440)(148,439)(149,438)(150,437)(151,531)
(152,535)(153,534)(154,533)(155,532)(156,526)(157,530)(158,529)(159,528)
(160,527)(161,546)(162,550)(163,549)(164,548)(165,547)(166,541)(167,545)
(168,544)(169,543)(170,542)(171,536)(172,540)(173,539)(174,538)(175,537)
(176,556)(177,560)(178,559)(179,558)(180,557)(181,551)(182,555)(183,554)
(184,553)(185,552)(186,571)(187,575)(188,574)(189,573)(190,572)(191,566)
(192,570)(193,569)(194,568)(195,567)(196,561)(197,565)(198,564)(199,563)
(200,562)(201,581)(202,585)(203,584)(204,583)(205,582)(206,576)(207,580)
(208,579)(209,578)(210,577)(211,596)(212,600)(213,599)(214,598)(215,597)
(216,591)(217,595)(218,594)(219,593)(220,592)(221,586)(222,590)(223,589)
(224,588)(225,587)(226,456)(227,460)(228,459)(229,458)(230,457)(231,451)
(232,455)(233,454)(234,453)(235,452)(236,471)(237,475)(238,474)(239,473)
(240,472)(241,466)(242,470)(243,469)(244,468)(245,467)(246,461)(247,465)
(248,464)(249,463)(250,462)(251,481)(252,485)(253,484)(254,483)(255,482)
(256,476)(257,480)(258,479)(259,478)(260,477)(261,496)(262,500)(263,499)
(264,498)(265,497)(266,491)(267,495)(268,494)(269,493)(270,492)(271,486)
(272,490)(273,489)(274,488)(275,487)(276,506)(277,510)(278,509)(279,508)
(280,507)(281,501)(282,505)(283,504)(284,503)(285,502)(286,521)(287,525)
(288,524)(289,523)(290,522)(291,516)(292,520)(293,519)(294,518)(295,517)
(296,511)(297,515)(298,514)(299,513)(300,512);
poly := sub<Sym(600)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope