include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {316,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {316,2}*1264
if this polytope has a name.
Group : SmallGroup(1264,36)
Rank : 3
Schlafli Type : {316,2}
Number of vertices, edges, etc : 316, 316, 2
Order of s0s1s2 : 316
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {158,2}*632
4-fold quotients : {79,2}*316
79-fold quotients : {4,2}*16
158-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 79)( 3, 78)( 4, 77)( 5, 76)( 6, 75)( 7, 74)( 8, 73)( 9, 72)
( 10, 71)( 11, 70)( 12, 69)( 13, 68)( 14, 67)( 15, 66)( 16, 65)( 17, 64)
( 18, 63)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 58)( 24, 57)( 25, 56)
( 26, 55)( 27, 54)( 28, 53)( 29, 52)( 30, 51)( 31, 50)( 32, 49)( 33, 48)
( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)( 40, 41)( 81,158)
( 82,157)( 83,156)( 84,155)( 85,154)( 86,153)( 87,152)( 88,151)( 89,150)
( 90,149)( 91,148)( 92,147)( 93,146)( 94,145)( 95,144)( 96,143)( 97,142)
( 98,141)( 99,140)(100,139)(101,138)(102,137)(103,136)(104,135)(105,134)
(106,133)(107,132)(108,131)(109,130)(110,129)(111,128)(112,127)(113,126)
(114,125)(115,124)(116,123)(117,122)(118,121)(119,120)(159,238)(160,316)
(161,315)(162,314)(163,313)(164,312)(165,311)(166,310)(167,309)(168,308)
(169,307)(170,306)(171,305)(172,304)(173,303)(174,302)(175,301)(176,300)
(177,299)(178,298)(179,297)(180,296)(181,295)(182,294)(183,293)(184,292)
(185,291)(186,290)(187,289)(188,288)(189,287)(190,286)(191,285)(192,284)
(193,283)(194,282)(195,281)(196,280)(197,279)(198,278)(199,277)(200,276)
(201,275)(202,274)(203,273)(204,272)(205,271)(206,270)(207,269)(208,268)
(209,267)(210,266)(211,265)(212,264)(213,263)(214,262)(215,261)(216,260)
(217,259)(218,258)(219,257)(220,256)(221,255)(222,254)(223,253)(224,252)
(225,251)(226,250)(227,249)(228,248)(229,247)(230,246)(231,245)(232,244)
(233,243)(234,242)(235,241)(236,240)(237,239);;
s1 := ( 1,160)( 2,159)( 3,237)( 4,236)( 5,235)( 6,234)( 7,233)( 8,232)
( 9,231)( 10,230)( 11,229)( 12,228)( 13,227)( 14,226)( 15,225)( 16,224)
( 17,223)( 18,222)( 19,221)( 20,220)( 21,219)( 22,218)( 23,217)( 24,216)
( 25,215)( 26,214)( 27,213)( 28,212)( 29,211)( 30,210)( 31,209)( 32,208)
( 33,207)( 34,206)( 35,205)( 36,204)( 37,203)( 38,202)( 39,201)( 40,200)
( 41,199)( 42,198)( 43,197)( 44,196)( 45,195)( 46,194)( 47,193)( 48,192)
( 49,191)( 50,190)( 51,189)( 52,188)( 53,187)( 54,186)( 55,185)( 56,184)
( 57,183)( 58,182)( 59,181)( 60,180)( 61,179)( 62,178)( 63,177)( 64,176)
( 65,175)( 66,174)( 67,173)( 68,172)( 69,171)( 70,170)( 71,169)( 72,168)
( 73,167)( 74,166)( 75,165)( 76,164)( 77,163)( 78,162)( 79,161)( 80,239)
( 81,238)( 82,316)( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)( 88,310)
( 89,309)( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)( 96,302)
( 97,301)( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)
(105,293)(106,292)(107,291)(108,290)(109,289)(110,288)(111,287)(112,286)
(113,285)(114,284)(115,283)(116,282)(117,281)(118,280)(119,279)(120,278)
(121,277)(122,276)(123,275)(124,274)(125,273)(126,272)(127,271)(128,270)
(129,269)(130,268)(131,267)(132,266)(133,265)(134,264)(135,263)(136,262)
(137,261)(138,260)(139,259)(140,258)(141,257)(142,256)(143,255)(144,254)
(145,253)(146,252)(147,251)(148,250)(149,249)(150,248)(151,247)(152,246)
(153,245)(154,244)(155,243)(156,242)(157,241)(158,240);;
s2 := (317,318);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(318)!( 2, 79)( 3, 78)( 4, 77)( 5, 76)( 6, 75)( 7, 74)( 8, 73)
( 9, 72)( 10, 71)( 11, 70)( 12, 69)( 13, 68)( 14, 67)( 15, 66)( 16, 65)
( 17, 64)( 18, 63)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 58)( 24, 57)
( 25, 56)( 26, 55)( 27, 54)( 28, 53)( 29, 52)( 30, 51)( 31, 50)( 32, 49)
( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)( 40, 41)
( 81,158)( 82,157)( 83,156)( 84,155)( 85,154)( 86,153)( 87,152)( 88,151)
( 89,150)( 90,149)( 91,148)( 92,147)( 93,146)( 94,145)( 95,144)( 96,143)
( 97,142)( 98,141)( 99,140)(100,139)(101,138)(102,137)(103,136)(104,135)
(105,134)(106,133)(107,132)(108,131)(109,130)(110,129)(111,128)(112,127)
(113,126)(114,125)(115,124)(116,123)(117,122)(118,121)(119,120)(159,238)
(160,316)(161,315)(162,314)(163,313)(164,312)(165,311)(166,310)(167,309)
(168,308)(169,307)(170,306)(171,305)(172,304)(173,303)(174,302)(175,301)
(176,300)(177,299)(178,298)(179,297)(180,296)(181,295)(182,294)(183,293)
(184,292)(185,291)(186,290)(187,289)(188,288)(189,287)(190,286)(191,285)
(192,284)(193,283)(194,282)(195,281)(196,280)(197,279)(198,278)(199,277)
(200,276)(201,275)(202,274)(203,273)(204,272)(205,271)(206,270)(207,269)
(208,268)(209,267)(210,266)(211,265)(212,264)(213,263)(214,262)(215,261)
(216,260)(217,259)(218,258)(219,257)(220,256)(221,255)(222,254)(223,253)
(224,252)(225,251)(226,250)(227,249)(228,248)(229,247)(230,246)(231,245)
(232,244)(233,243)(234,242)(235,241)(236,240)(237,239);
s1 := Sym(318)!( 1,160)( 2,159)( 3,237)( 4,236)( 5,235)( 6,234)( 7,233)
( 8,232)( 9,231)( 10,230)( 11,229)( 12,228)( 13,227)( 14,226)( 15,225)
( 16,224)( 17,223)( 18,222)( 19,221)( 20,220)( 21,219)( 22,218)( 23,217)
( 24,216)( 25,215)( 26,214)( 27,213)( 28,212)( 29,211)( 30,210)( 31,209)
( 32,208)( 33,207)( 34,206)( 35,205)( 36,204)( 37,203)( 38,202)( 39,201)
( 40,200)( 41,199)( 42,198)( 43,197)( 44,196)( 45,195)( 46,194)( 47,193)
( 48,192)( 49,191)( 50,190)( 51,189)( 52,188)( 53,187)( 54,186)( 55,185)
( 56,184)( 57,183)( 58,182)( 59,181)( 60,180)( 61,179)( 62,178)( 63,177)
( 64,176)( 65,175)( 66,174)( 67,173)( 68,172)( 69,171)( 70,170)( 71,169)
( 72,168)( 73,167)( 74,166)( 75,165)( 76,164)( 77,163)( 78,162)( 79,161)
( 80,239)( 81,238)( 82,316)( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)
( 88,310)( 89,309)( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)
( 96,302)( 97,301)( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)
(104,294)(105,293)(106,292)(107,291)(108,290)(109,289)(110,288)(111,287)
(112,286)(113,285)(114,284)(115,283)(116,282)(117,281)(118,280)(119,279)
(120,278)(121,277)(122,276)(123,275)(124,274)(125,273)(126,272)(127,271)
(128,270)(129,269)(130,268)(131,267)(132,266)(133,265)(134,264)(135,263)
(136,262)(137,261)(138,260)(139,259)(140,258)(141,257)(142,256)(143,255)
(144,254)(145,253)(146,252)(147,251)(148,250)(149,249)(150,248)(151,247)
(152,246)(153,245)(154,244)(155,243)(156,242)(157,241)(158,240);
s2 := Sym(318)!(317,318);
poly := sub<Sym(318)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope