include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,4,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,4,8}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1036167)
Rank : 5
Schlafli Type : {2,10,4,8}
Number of vertices, edges, etc : 2, 10, 20, 16, 8
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,4,4}*640
4-fold quotients : {2,10,2,4}*320, {2,10,4,2}*320
5-fold quotients : {2,2,4,8}*256b
8-fold quotients : {2,5,2,4}*160, {2,10,2,2}*160
10-fold quotients : {2,2,4,4}*128
16-fold quotients : {2,5,2,2}*80
20-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 43)( 4, 47)( 5, 46)( 6, 45)( 7, 44)( 8, 48)( 9, 52)( 10, 51)
( 11, 50)( 12, 49)( 13, 53)( 14, 57)( 15, 56)( 16, 55)( 17, 54)( 18, 58)
( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 63)( 24, 67)( 25, 66)( 26, 65)
( 27, 64)( 28, 68)( 29, 72)( 30, 71)( 31, 70)( 32, 69)( 33, 73)( 34, 77)
( 35, 76)( 36, 75)( 37, 74)( 38, 78)( 39, 82)( 40, 81)( 41, 80)( 42, 79)
( 83,123)( 84,127)( 85,126)( 86,125)( 87,124)( 88,128)( 89,132)( 90,131)
( 91,130)( 92,129)( 93,133)( 94,137)( 95,136)( 96,135)( 97,134)( 98,138)
( 99,142)(100,141)(101,140)(102,139)(103,143)(104,147)(105,146)(106,145)
(107,144)(108,148)(109,152)(110,151)(111,150)(112,149)(113,153)(114,157)
(115,156)(116,155)(117,154)(118,158)(119,162)(120,161)(121,160)(122,159)
(163,203)(164,207)(165,206)(166,205)(167,204)(168,208)(169,212)(170,211)
(171,210)(172,209)(173,213)(174,217)(175,216)(176,215)(177,214)(178,218)
(179,222)(180,221)(181,220)(182,219)(183,223)(184,227)(185,226)(186,225)
(187,224)(188,228)(189,232)(190,231)(191,230)(192,229)(193,233)(194,237)
(195,236)(196,235)(197,234)(198,238)(199,242)(200,241)(201,240)(202,239)
(243,283)(244,287)(245,286)(246,285)(247,284)(248,288)(249,292)(250,291)
(251,290)(252,289)(253,293)(254,297)(255,296)(256,295)(257,294)(258,298)
(259,302)(260,301)(261,300)(262,299)(263,303)(264,307)(265,306)(266,305)
(267,304)(268,308)(269,312)(270,311)(271,310)(272,309)(273,313)(274,317)
(275,316)(276,315)(277,314)(278,318)(279,322)(280,321)(281,320)(282,319);;
s2 := ( 3,124)( 4,123)( 5,127)( 6,126)( 7,125)( 8,129)( 9,128)( 10,132)
( 11,131)( 12,130)( 13,134)( 14,133)( 15,137)( 16,136)( 17,135)( 18,139)
( 19,138)( 20,142)( 21,141)( 22,140)( 23,149)( 24,148)( 25,152)( 26,151)
( 27,150)( 28,144)( 29,143)( 30,147)( 31,146)( 32,145)( 33,159)( 34,158)
( 35,162)( 36,161)( 37,160)( 38,154)( 39,153)( 40,157)( 41,156)( 42,155)
( 43, 84)( 44, 83)( 45, 87)( 46, 86)( 47, 85)( 48, 89)( 49, 88)( 50, 92)
( 51, 91)( 52, 90)( 53, 94)( 54, 93)( 55, 97)( 56, 96)( 57, 95)( 58, 99)
( 59, 98)( 60,102)( 61,101)( 62,100)( 63,109)( 64,108)( 65,112)( 66,111)
( 67,110)( 68,104)( 69,103)( 70,107)( 71,106)( 72,105)( 73,119)( 74,118)
( 75,122)( 76,121)( 77,120)( 78,114)( 79,113)( 80,117)( 81,116)( 82,115)
(163,284)(164,283)(165,287)(166,286)(167,285)(168,289)(169,288)(170,292)
(171,291)(172,290)(173,294)(174,293)(175,297)(176,296)(177,295)(178,299)
(179,298)(180,302)(181,301)(182,300)(183,309)(184,308)(185,312)(186,311)
(187,310)(188,304)(189,303)(190,307)(191,306)(192,305)(193,319)(194,318)
(195,322)(196,321)(197,320)(198,314)(199,313)(200,317)(201,316)(202,315)
(203,244)(204,243)(205,247)(206,246)(207,245)(208,249)(209,248)(210,252)
(211,251)(212,250)(213,254)(214,253)(215,257)(216,256)(217,255)(218,259)
(219,258)(220,262)(221,261)(222,260)(223,269)(224,268)(225,272)(226,271)
(227,270)(228,264)(229,263)(230,267)(231,266)(232,265)(233,279)(234,278)
(235,282)(236,281)(237,280)(238,274)(239,273)(240,277)(241,276)(242,275);;
s3 := ( 23, 28)( 24, 29)( 25, 30)( 26, 31)( 27, 32)( 33, 38)( 34, 39)( 35, 40)
( 36, 41)( 37, 42)( 63, 68)( 64, 69)( 65, 70)( 66, 71)( 67, 72)( 73, 78)
( 74, 79)( 75, 80)( 76, 81)( 77, 82)( 83, 93)( 84, 94)( 85, 95)( 86, 96)
( 87, 97)( 88, 98)( 89, 99)( 90,100)( 91,101)( 92,102)(103,118)(104,119)
(105,120)(106,121)(107,122)(108,113)(109,114)(110,115)(111,116)(112,117)
(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)
(131,141)(132,142)(143,158)(144,159)(145,160)(146,161)(147,162)(148,153)
(149,154)(150,155)(151,156)(152,157)(163,183)(164,184)(165,185)(166,186)
(167,187)(168,188)(169,189)(170,190)(171,191)(172,192)(173,193)(174,194)
(175,195)(176,196)(177,197)(178,198)(179,199)(180,200)(181,201)(182,202)
(203,223)(204,224)(205,225)(206,226)(207,227)(208,228)(209,229)(210,230)
(211,231)(212,232)(213,233)(214,234)(215,235)(216,236)(217,237)(218,238)
(219,239)(220,240)(221,241)(222,242)(243,278)(244,279)(245,280)(246,281)
(247,282)(248,273)(249,274)(250,275)(251,276)(252,277)(253,268)(254,269)
(255,270)(256,271)(257,272)(258,263)(259,264)(260,265)(261,266)(262,267)
(283,318)(284,319)(285,320)(286,321)(287,322)(288,313)(289,314)(290,315)
(291,316)(292,317)(293,308)(294,309)(295,310)(296,311)(297,312)(298,303)
(299,304)(300,305)(301,306)(302,307);;
s4 := ( 3,163)( 4,164)( 5,165)( 6,166)( 7,167)( 8,168)( 9,169)( 10,170)
( 11,171)( 12,172)( 13,178)( 14,179)( 15,180)( 16,181)( 17,182)( 18,173)
( 19,174)( 20,175)( 21,176)( 22,177)( 23,188)( 24,189)( 25,190)( 26,191)
( 27,192)( 28,183)( 29,184)( 30,185)( 31,186)( 32,187)( 33,193)( 34,194)
( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)( 40,200)( 41,201)( 42,202)
( 43,203)( 44,204)( 45,205)( 46,206)( 47,207)( 48,208)( 49,209)( 50,210)
( 51,211)( 52,212)( 53,218)( 54,219)( 55,220)( 56,221)( 57,222)( 58,213)
( 59,214)( 60,215)( 61,216)( 62,217)( 63,228)( 64,229)( 65,230)( 66,231)
( 67,232)( 68,223)( 69,224)( 70,225)( 71,226)( 72,227)( 73,233)( 74,234)
( 75,235)( 76,236)( 77,237)( 78,238)( 79,239)( 80,240)( 81,241)( 82,242)
( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)( 88,248)( 89,249)( 90,250)
( 91,251)( 92,252)( 93,258)( 94,259)( 95,260)( 96,261)( 97,262)( 98,253)
( 99,254)(100,255)(101,256)(102,257)(103,268)(104,269)(105,270)(106,271)
(107,272)(108,263)(109,264)(110,265)(111,266)(112,267)(113,273)(114,274)
(115,275)(116,276)(117,277)(118,278)(119,279)(120,280)(121,281)(122,282)
(123,283)(124,284)(125,285)(126,286)(127,287)(128,288)(129,289)(130,290)
(131,291)(132,292)(133,298)(134,299)(135,300)(136,301)(137,302)(138,293)
(139,294)(140,295)(141,296)(142,297)(143,308)(144,309)(145,310)(146,311)
(147,312)(148,303)(149,304)(150,305)(151,306)(152,307)(153,313)(154,314)
(155,315)(156,316)(157,317)(158,318)(159,319)(160,320)(161,321)(162,322);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!( 3, 43)( 4, 47)( 5, 46)( 6, 45)( 7, 44)( 8, 48)( 9, 52)
( 10, 51)( 11, 50)( 12, 49)( 13, 53)( 14, 57)( 15, 56)( 16, 55)( 17, 54)
( 18, 58)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 63)( 24, 67)( 25, 66)
( 26, 65)( 27, 64)( 28, 68)( 29, 72)( 30, 71)( 31, 70)( 32, 69)( 33, 73)
( 34, 77)( 35, 76)( 36, 75)( 37, 74)( 38, 78)( 39, 82)( 40, 81)( 41, 80)
( 42, 79)( 83,123)( 84,127)( 85,126)( 86,125)( 87,124)( 88,128)( 89,132)
( 90,131)( 91,130)( 92,129)( 93,133)( 94,137)( 95,136)( 96,135)( 97,134)
( 98,138)( 99,142)(100,141)(101,140)(102,139)(103,143)(104,147)(105,146)
(106,145)(107,144)(108,148)(109,152)(110,151)(111,150)(112,149)(113,153)
(114,157)(115,156)(116,155)(117,154)(118,158)(119,162)(120,161)(121,160)
(122,159)(163,203)(164,207)(165,206)(166,205)(167,204)(168,208)(169,212)
(170,211)(171,210)(172,209)(173,213)(174,217)(175,216)(176,215)(177,214)
(178,218)(179,222)(180,221)(181,220)(182,219)(183,223)(184,227)(185,226)
(186,225)(187,224)(188,228)(189,232)(190,231)(191,230)(192,229)(193,233)
(194,237)(195,236)(196,235)(197,234)(198,238)(199,242)(200,241)(201,240)
(202,239)(243,283)(244,287)(245,286)(246,285)(247,284)(248,288)(249,292)
(250,291)(251,290)(252,289)(253,293)(254,297)(255,296)(256,295)(257,294)
(258,298)(259,302)(260,301)(261,300)(262,299)(263,303)(264,307)(265,306)
(266,305)(267,304)(268,308)(269,312)(270,311)(271,310)(272,309)(273,313)
(274,317)(275,316)(276,315)(277,314)(278,318)(279,322)(280,321)(281,320)
(282,319);
s2 := Sym(322)!( 3,124)( 4,123)( 5,127)( 6,126)( 7,125)( 8,129)( 9,128)
( 10,132)( 11,131)( 12,130)( 13,134)( 14,133)( 15,137)( 16,136)( 17,135)
( 18,139)( 19,138)( 20,142)( 21,141)( 22,140)( 23,149)( 24,148)( 25,152)
( 26,151)( 27,150)( 28,144)( 29,143)( 30,147)( 31,146)( 32,145)( 33,159)
( 34,158)( 35,162)( 36,161)( 37,160)( 38,154)( 39,153)( 40,157)( 41,156)
( 42,155)( 43, 84)( 44, 83)( 45, 87)( 46, 86)( 47, 85)( 48, 89)( 49, 88)
( 50, 92)( 51, 91)( 52, 90)( 53, 94)( 54, 93)( 55, 97)( 56, 96)( 57, 95)
( 58, 99)( 59, 98)( 60,102)( 61,101)( 62,100)( 63,109)( 64,108)( 65,112)
( 66,111)( 67,110)( 68,104)( 69,103)( 70,107)( 71,106)( 72,105)( 73,119)
( 74,118)( 75,122)( 76,121)( 77,120)( 78,114)( 79,113)( 80,117)( 81,116)
( 82,115)(163,284)(164,283)(165,287)(166,286)(167,285)(168,289)(169,288)
(170,292)(171,291)(172,290)(173,294)(174,293)(175,297)(176,296)(177,295)
(178,299)(179,298)(180,302)(181,301)(182,300)(183,309)(184,308)(185,312)
(186,311)(187,310)(188,304)(189,303)(190,307)(191,306)(192,305)(193,319)
(194,318)(195,322)(196,321)(197,320)(198,314)(199,313)(200,317)(201,316)
(202,315)(203,244)(204,243)(205,247)(206,246)(207,245)(208,249)(209,248)
(210,252)(211,251)(212,250)(213,254)(214,253)(215,257)(216,256)(217,255)
(218,259)(219,258)(220,262)(221,261)(222,260)(223,269)(224,268)(225,272)
(226,271)(227,270)(228,264)(229,263)(230,267)(231,266)(232,265)(233,279)
(234,278)(235,282)(236,281)(237,280)(238,274)(239,273)(240,277)(241,276)
(242,275);
s3 := Sym(322)!( 23, 28)( 24, 29)( 25, 30)( 26, 31)( 27, 32)( 33, 38)( 34, 39)
( 35, 40)( 36, 41)( 37, 42)( 63, 68)( 64, 69)( 65, 70)( 66, 71)( 67, 72)
( 73, 78)( 74, 79)( 75, 80)( 76, 81)( 77, 82)( 83, 93)( 84, 94)( 85, 95)
( 86, 96)( 87, 97)( 88, 98)( 89, 99)( 90,100)( 91,101)( 92,102)(103,118)
(104,119)(105,120)(106,121)(107,122)(108,113)(109,114)(110,115)(111,116)
(112,117)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)
(130,140)(131,141)(132,142)(143,158)(144,159)(145,160)(146,161)(147,162)
(148,153)(149,154)(150,155)(151,156)(152,157)(163,183)(164,184)(165,185)
(166,186)(167,187)(168,188)(169,189)(170,190)(171,191)(172,192)(173,193)
(174,194)(175,195)(176,196)(177,197)(178,198)(179,199)(180,200)(181,201)
(182,202)(203,223)(204,224)(205,225)(206,226)(207,227)(208,228)(209,229)
(210,230)(211,231)(212,232)(213,233)(214,234)(215,235)(216,236)(217,237)
(218,238)(219,239)(220,240)(221,241)(222,242)(243,278)(244,279)(245,280)
(246,281)(247,282)(248,273)(249,274)(250,275)(251,276)(252,277)(253,268)
(254,269)(255,270)(256,271)(257,272)(258,263)(259,264)(260,265)(261,266)
(262,267)(283,318)(284,319)(285,320)(286,321)(287,322)(288,313)(289,314)
(290,315)(291,316)(292,317)(293,308)(294,309)(295,310)(296,311)(297,312)
(298,303)(299,304)(300,305)(301,306)(302,307);
s4 := Sym(322)!( 3,163)( 4,164)( 5,165)( 6,166)( 7,167)( 8,168)( 9,169)
( 10,170)( 11,171)( 12,172)( 13,178)( 14,179)( 15,180)( 16,181)( 17,182)
( 18,173)( 19,174)( 20,175)( 21,176)( 22,177)( 23,188)( 24,189)( 25,190)
( 26,191)( 27,192)( 28,183)( 29,184)( 30,185)( 31,186)( 32,187)( 33,193)
( 34,194)( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)( 40,200)( 41,201)
( 42,202)( 43,203)( 44,204)( 45,205)( 46,206)( 47,207)( 48,208)( 49,209)
( 50,210)( 51,211)( 52,212)( 53,218)( 54,219)( 55,220)( 56,221)( 57,222)
( 58,213)( 59,214)( 60,215)( 61,216)( 62,217)( 63,228)( 64,229)( 65,230)
( 66,231)( 67,232)( 68,223)( 69,224)( 70,225)( 71,226)( 72,227)( 73,233)
( 74,234)( 75,235)( 76,236)( 77,237)( 78,238)( 79,239)( 80,240)( 81,241)
( 82,242)( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)( 88,248)( 89,249)
( 90,250)( 91,251)( 92,252)( 93,258)( 94,259)( 95,260)( 96,261)( 97,262)
( 98,253)( 99,254)(100,255)(101,256)(102,257)(103,268)(104,269)(105,270)
(106,271)(107,272)(108,263)(109,264)(110,265)(111,266)(112,267)(113,273)
(114,274)(115,275)(116,276)(117,277)(118,278)(119,279)(120,280)(121,281)
(122,282)(123,283)(124,284)(125,285)(126,286)(127,287)(128,288)(129,289)
(130,290)(131,291)(132,292)(133,298)(134,299)(135,300)(136,301)(137,302)
(138,293)(139,294)(140,295)(141,296)(142,297)(143,308)(144,309)(145,310)
(146,311)(147,312)(148,303)(149,304)(150,305)(151,306)(152,307)(153,313)
(154,314)(155,315)(156,316)(157,317)(158,318)(159,319)(160,320)(161,321)
(162,322);
poly := sub<Sym(322)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope