Polytope of Type {2,10,2,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,2,4}*320
if this polytope has a name.
Group : SmallGroup(320,1612)
Rank : 5
Schlafli Type : {2,10,2,4}
Number of vertices, edges, etc : 2, 10, 10, 4, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,10,2,4,2} of size 640
   {2,10,2,4,3} of size 960
   {2,10,2,4,4} of size 1280
   {2,10,2,4,6} of size 1920
   {2,10,2,4,3} of size 1920
   {2,10,2,4,6} of size 1920
   {2,10,2,4,6} of size 1920
Vertex Figure Of :
   {2,2,10,2,4} of size 640
   {3,2,10,2,4} of size 960
   {4,2,10,2,4} of size 1280
   {5,2,10,2,4} of size 1600
   {6,2,10,2,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,5,2,4}*160, {2,10,2,2}*160
   4-fold quotients : {2,5,2,2}*80
   5-fold quotients : {2,2,2,4}*64
   10-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,20,2,4}*640, {2,10,4,4}*640, {4,10,2,4}*640, {2,10,2,8}*640
   3-fold covers : {2,10,2,12}*960, {2,10,6,4}*960a, {6,10,2,4}*960, {2,30,2,4}*960
   4-fold covers : {2,20,4,4}*1280, {4,10,4,4}*1280, {4,20,2,4}*1280, {2,10,4,8}*1280a, {2,10,8,4}*1280a, {2,10,4,8}*1280b, {2,10,8,4}*1280b, {2,10,4,4}*1280, {4,10,2,8}*1280, {8,10,2,4}*1280, {2,20,2,8}*1280, {2,40,2,4}*1280, {2,10,2,16}*1280
   5-fold covers : {2,50,2,4}*1600, {2,10,2,20}*1600, {2,10,10,4}*1600a, {10,10,2,4}*1600a, {10,10,2,4}*1600b, {2,10,10,4}*1600c
   6-fold covers : {2,30,4,4}*1920, {6,10,4,4}*1920, {2,10,4,12}*1920, {2,10,12,4}*1920a, {4,30,2,4}*1920a, {2,60,2,4}*1920, {4,10,6,4}*1920a, {4,10,2,12}*1920, {12,10,2,4}*1920, {6,20,2,4}*1920a, {2,20,6,4}*1920a, {2,20,2,12}*1920, {2,30,2,8}*1920, {2,10,6,8}*1920, {6,10,2,8}*1920, {2,10,2,24}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7, 8)( 9,10)(11,12);;
s2 := ( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,12);;
s3 := (14,15);;
s4 := (13,14)(15,16);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!(1,2);
s1 := Sym(16)!( 5, 6)( 7, 8)( 9,10)(11,12);
s2 := Sym(16)!( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,12);
s3 := Sym(16)!(14,15);
s4 := Sym(16)!(13,14)(15,16);
poly := sub<Sym(16)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope