include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,8,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,8,4}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1036167)
Rank : 5
Schlafli Type : {2,10,8,4}
Number of vertices, edges, etc : 2, 10, 40, 16, 4
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,4,4}*640
4-fold quotients : {2,10,2,4}*320, {2,10,4,2}*320
5-fold quotients : {2,2,8,4}*256b
8-fold quotients : {2,5,2,4}*160, {2,10,2,2}*160
10-fold quotients : {2,2,4,4}*128
16-fold quotients : {2,5,2,2}*80
20-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 43)( 4, 47)( 5, 46)( 6, 45)( 7, 44)( 8, 48)( 9, 52)( 10, 51)
( 11, 50)( 12, 49)( 13, 53)( 14, 57)( 15, 56)( 16, 55)( 17, 54)( 18, 58)
( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 63)( 24, 67)( 25, 66)( 26, 65)
( 27, 64)( 28, 68)( 29, 72)( 30, 71)( 31, 70)( 32, 69)( 33, 73)( 34, 77)
( 35, 76)( 36, 75)( 37, 74)( 38, 78)( 39, 82)( 40, 81)( 41, 80)( 42, 79)
( 83,123)( 84,127)( 85,126)( 86,125)( 87,124)( 88,128)( 89,132)( 90,131)
( 91,130)( 92,129)( 93,133)( 94,137)( 95,136)( 96,135)( 97,134)( 98,138)
( 99,142)(100,141)(101,140)(102,139)(103,143)(104,147)(105,146)(106,145)
(107,144)(108,148)(109,152)(110,151)(111,150)(112,149)(113,153)(114,157)
(115,156)(116,155)(117,154)(118,158)(119,162)(120,161)(121,160)(122,159)
(163,203)(164,207)(165,206)(166,205)(167,204)(168,208)(169,212)(170,211)
(171,210)(172,209)(173,213)(174,217)(175,216)(176,215)(177,214)(178,218)
(179,222)(180,221)(181,220)(182,219)(183,223)(184,227)(185,226)(186,225)
(187,224)(188,228)(189,232)(190,231)(191,230)(192,229)(193,233)(194,237)
(195,236)(196,235)(197,234)(198,238)(199,242)(200,241)(201,240)(202,239)
(243,283)(244,287)(245,286)(246,285)(247,284)(248,288)(249,292)(250,291)
(251,290)(252,289)(253,293)(254,297)(255,296)(256,295)(257,294)(258,298)
(259,302)(260,301)(261,300)(262,299)(263,303)(264,307)(265,306)(266,305)
(267,304)(268,308)(269,312)(270,311)(271,310)(272,309)(273,313)(274,317)
(275,316)(276,315)(277,314)(278,318)(279,322)(280,321)(281,320)(282,319);;
s2 := ( 3,204)( 4,203)( 5,207)( 6,206)( 7,205)( 8,209)( 9,208)( 10,212)
( 11,211)( 12,210)( 13,219)( 14,218)( 15,222)( 16,221)( 17,220)( 18,214)
( 19,213)( 20,217)( 21,216)( 22,215)( 23,229)( 24,228)( 25,232)( 26,231)
( 27,230)( 28,224)( 29,223)( 30,227)( 31,226)( 32,225)( 33,234)( 34,233)
( 35,237)( 36,236)( 37,235)( 38,239)( 39,238)( 40,242)( 41,241)( 42,240)
( 43,164)( 44,163)( 45,167)( 46,166)( 47,165)( 48,169)( 49,168)( 50,172)
( 51,171)( 52,170)( 53,179)( 54,178)( 55,182)( 56,181)( 57,180)( 58,174)
( 59,173)( 60,177)( 61,176)( 62,175)( 63,189)( 64,188)( 65,192)( 66,191)
( 67,190)( 68,184)( 69,183)( 70,187)( 71,186)( 72,185)( 73,194)( 74,193)
( 75,197)( 76,196)( 77,195)( 78,199)( 79,198)( 80,202)( 81,201)( 82,200)
( 83,284)( 84,283)( 85,287)( 86,286)( 87,285)( 88,289)( 89,288)( 90,292)
( 91,291)( 92,290)( 93,299)( 94,298)( 95,302)( 96,301)( 97,300)( 98,294)
( 99,293)(100,297)(101,296)(102,295)(103,309)(104,308)(105,312)(106,311)
(107,310)(108,304)(109,303)(110,307)(111,306)(112,305)(113,314)(114,313)
(115,317)(116,316)(117,315)(118,319)(119,318)(120,322)(121,321)(122,320)
(123,244)(124,243)(125,247)(126,246)(127,245)(128,249)(129,248)(130,252)
(131,251)(132,250)(133,259)(134,258)(135,262)(136,261)(137,260)(138,254)
(139,253)(140,257)(141,256)(142,255)(143,269)(144,268)(145,272)(146,271)
(147,270)(148,264)(149,263)(150,267)(151,266)(152,265)(153,274)(154,273)
(155,277)(156,276)(157,275)(158,279)(159,278)(160,282)(161,281)(162,280);;
s3 := ( 23, 28)( 24, 29)( 25, 30)( 26, 31)( 27, 32)( 33, 38)( 34, 39)( 35, 40)
( 36, 41)( 37, 42)( 63, 68)( 64, 69)( 65, 70)( 66, 71)( 67, 72)( 73, 78)
( 74, 79)( 75, 80)( 76, 81)( 77, 82)( 83, 93)( 84, 94)( 85, 95)( 86, 96)
( 87, 97)( 88, 98)( 89, 99)( 90,100)( 91,101)( 92,102)(103,118)(104,119)
(105,120)(106,121)(107,122)(108,113)(109,114)(110,115)(111,116)(112,117)
(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)
(131,141)(132,142)(143,158)(144,159)(145,160)(146,161)(147,162)(148,153)
(149,154)(150,155)(151,156)(152,157)(163,183)(164,184)(165,185)(166,186)
(167,187)(168,188)(169,189)(170,190)(171,191)(172,192)(173,193)(174,194)
(175,195)(176,196)(177,197)(178,198)(179,199)(180,200)(181,201)(182,202)
(203,223)(204,224)(205,225)(206,226)(207,227)(208,228)(209,229)(210,230)
(211,231)(212,232)(213,233)(214,234)(215,235)(216,236)(217,237)(218,238)
(219,239)(220,240)(221,241)(222,242)(243,278)(244,279)(245,280)(246,281)
(247,282)(248,273)(249,274)(250,275)(251,276)(252,277)(253,268)(254,269)
(255,270)(256,271)(257,272)(258,263)(259,264)(260,265)(261,266)(262,267)
(283,318)(284,319)(285,320)(286,321)(287,322)(288,313)(289,314)(290,315)
(291,316)(292,317)(293,308)(294,309)(295,310)(296,311)(297,312)(298,303)
(299,304)(300,305)(301,306)(302,307);;
s4 := ( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)( 8, 88)( 9, 89)( 10, 90)
( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)( 18, 98)
( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)( 26,111)
( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)( 34,119)
( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)( 42,117)
( 43,123)( 44,124)( 45,125)( 46,126)( 47,127)( 48,128)( 49,129)( 50,130)
( 51,131)( 52,132)( 53,133)( 54,134)( 55,135)( 56,136)( 57,137)( 58,138)
( 59,139)( 60,140)( 61,141)( 62,142)( 63,148)( 64,149)( 65,150)( 66,151)
( 67,152)( 68,143)( 69,144)( 70,145)( 71,146)( 72,147)( 73,158)( 74,159)
( 75,160)( 76,161)( 77,162)( 78,153)( 79,154)( 80,155)( 81,156)( 82,157)
(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)(170,250)
(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)(178,258)
(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)(186,271)
(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)(194,279)
(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)(202,277)
(203,283)(204,284)(205,285)(206,286)(207,287)(208,288)(209,289)(210,290)
(211,291)(212,292)(213,293)(214,294)(215,295)(216,296)(217,297)(218,298)
(219,299)(220,300)(221,301)(222,302)(223,308)(224,309)(225,310)(226,311)
(227,312)(228,303)(229,304)(230,305)(231,306)(232,307)(233,318)(234,319)
(235,320)(236,321)(237,322)(238,313)(239,314)(240,315)(241,316)(242,317);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!( 3, 43)( 4, 47)( 5, 46)( 6, 45)( 7, 44)( 8, 48)( 9, 52)
( 10, 51)( 11, 50)( 12, 49)( 13, 53)( 14, 57)( 15, 56)( 16, 55)( 17, 54)
( 18, 58)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 63)( 24, 67)( 25, 66)
( 26, 65)( 27, 64)( 28, 68)( 29, 72)( 30, 71)( 31, 70)( 32, 69)( 33, 73)
( 34, 77)( 35, 76)( 36, 75)( 37, 74)( 38, 78)( 39, 82)( 40, 81)( 41, 80)
( 42, 79)( 83,123)( 84,127)( 85,126)( 86,125)( 87,124)( 88,128)( 89,132)
( 90,131)( 91,130)( 92,129)( 93,133)( 94,137)( 95,136)( 96,135)( 97,134)
( 98,138)( 99,142)(100,141)(101,140)(102,139)(103,143)(104,147)(105,146)
(106,145)(107,144)(108,148)(109,152)(110,151)(111,150)(112,149)(113,153)
(114,157)(115,156)(116,155)(117,154)(118,158)(119,162)(120,161)(121,160)
(122,159)(163,203)(164,207)(165,206)(166,205)(167,204)(168,208)(169,212)
(170,211)(171,210)(172,209)(173,213)(174,217)(175,216)(176,215)(177,214)
(178,218)(179,222)(180,221)(181,220)(182,219)(183,223)(184,227)(185,226)
(186,225)(187,224)(188,228)(189,232)(190,231)(191,230)(192,229)(193,233)
(194,237)(195,236)(196,235)(197,234)(198,238)(199,242)(200,241)(201,240)
(202,239)(243,283)(244,287)(245,286)(246,285)(247,284)(248,288)(249,292)
(250,291)(251,290)(252,289)(253,293)(254,297)(255,296)(256,295)(257,294)
(258,298)(259,302)(260,301)(261,300)(262,299)(263,303)(264,307)(265,306)
(266,305)(267,304)(268,308)(269,312)(270,311)(271,310)(272,309)(273,313)
(274,317)(275,316)(276,315)(277,314)(278,318)(279,322)(280,321)(281,320)
(282,319);
s2 := Sym(322)!( 3,204)( 4,203)( 5,207)( 6,206)( 7,205)( 8,209)( 9,208)
( 10,212)( 11,211)( 12,210)( 13,219)( 14,218)( 15,222)( 16,221)( 17,220)
( 18,214)( 19,213)( 20,217)( 21,216)( 22,215)( 23,229)( 24,228)( 25,232)
( 26,231)( 27,230)( 28,224)( 29,223)( 30,227)( 31,226)( 32,225)( 33,234)
( 34,233)( 35,237)( 36,236)( 37,235)( 38,239)( 39,238)( 40,242)( 41,241)
( 42,240)( 43,164)( 44,163)( 45,167)( 46,166)( 47,165)( 48,169)( 49,168)
( 50,172)( 51,171)( 52,170)( 53,179)( 54,178)( 55,182)( 56,181)( 57,180)
( 58,174)( 59,173)( 60,177)( 61,176)( 62,175)( 63,189)( 64,188)( 65,192)
( 66,191)( 67,190)( 68,184)( 69,183)( 70,187)( 71,186)( 72,185)( 73,194)
( 74,193)( 75,197)( 76,196)( 77,195)( 78,199)( 79,198)( 80,202)( 81,201)
( 82,200)( 83,284)( 84,283)( 85,287)( 86,286)( 87,285)( 88,289)( 89,288)
( 90,292)( 91,291)( 92,290)( 93,299)( 94,298)( 95,302)( 96,301)( 97,300)
( 98,294)( 99,293)(100,297)(101,296)(102,295)(103,309)(104,308)(105,312)
(106,311)(107,310)(108,304)(109,303)(110,307)(111,306)(112,305)(113,314)
(114,313)(115,317)(116,316)(117,315)(118,319)(119,318)(120,322)(121,321)
(122,320)(123,244)(124,243)(125,247)(126,246)(127,245)(128,249)(129,248)
(130,252)(131,251)(132,250)(133,259)(134,258)(135,262)(136,261)(137,260)
(138,254)(139,253)(140,257)(141,256)(142,255)(143,269)(144,268)(145,272)
(146,271)(147,270)(148,264)(149,263)(150,267)(151,266)(152,265)(153,274)
(154,273)(155,277)(156,276)(157,275)(158,279)(159,278)(160,282)(161,281)
(162,280);
s3 := Sym(322)!( 23, 28)( 24, 29)( 25, 30)( 26, 31)( 27, 32)( 33, 38)( 34, 39)
( 35, 40)( 36, 41)( 37, 42)( 63, 68)( 64, 69)( 65, 70)( 66, 71)( 67, 72)
( 73, 78)( 74, 79)( 75, 80)( 76, 81)( 77, 82)( 83, 93)( 84, 94)( 85, 95)
( 86, 96)( 87, 97)( 88, 98)( 89, 99)( 90,100)( 91,101)( 92,102)(103,118)
(104,119)(105,120)(106,121)(107,122)(108,113)(109,114)(110,115)(111,116)
(112,117)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)
(130,140)(131,141)(132,142)(143,158)(144,159)(145,160)(146,161)(147,162)
(148,153)(149,154)(150,155)(151,156)(152,157)(163,183)(164,184)(165,185)
(166,186)(167,187)(168,188)(169,189)(170,190)(171,191)(172,192)(173,193)
(174,194)(175,195)(176,196)(177,197)(178,198)(179,199)(180,200)(181,201)
(182,202)(203,223)(204,224)(205,225)(206,226)(207,227)(208,228)(209,229)
(210,230)(211,231)(212,232)(213,233)(214,234)(215,235)(216,236)(217,237)
(218,238)(219,239)(220,240)(221,241)(222,242)(243,278)(244,279)(245,280)
(246,281)(247,282)(248,273)(249,274)(250,275)(251,276)(252,277)(253,268)
(254,269)(255,270)(256,271)(257,272)(258,263)(259,264)(260,265)(261,266)
(262,267)(283,318)(284,319)(285,320)(286,321)(287,322)(288,313)(289,314)
(290,315)(291,316)(292,317)(293,308)(294,309)(295,310)(296,311)(297,312)
(298,303)(299,304)(300,305)(301,306)(302,307);
s4 := Sym(322)!( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)( 8, 88)( 9, 89)
( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)
( 18, 98)( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)
( 26,111)( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)
( 34,119)( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)
( 42,117)( 43,123)( 44,124)( 45,125)( 46,126)( 47,127)( 48,128)( 49,129)
( 50,130)( 51,131)( 52,132)( 53,133)( 54,134)( 55,135)( 56,136)( 57,137)
( 58,138)( 59,139)( 60,140)( 61,141)( 62,142)( 63,148)( 64,149)( 65,150)
( 66,151)( 67,152)( 68,143)( 69,144)( 70,145)( 71,146)( 72,147)( 73,158)
( 74,159)( 75,160)( 76,161)( 77,162)( 78,153)( 79,154)( 80,155)( 81,156)
( 82,157)(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)
(170,250)(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)
(178,258)(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)
(186,271)(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)
(194,279)(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)
(202,277)(203,283)(204,284)(205,285)(206,286)(207,287)(208,288)(209,289)
(210,290)(211,291)(212,292)(213,293)(214,294)(215,295)(216,296)(217,297)
(218,298)(219,299)(220,300)(221,301)(222,302)(223,308)(224,309)(225,310)
(226,311)(227,312)(228,303)(229,304)(230,305)(231,306)(232,307)(233,318)
(234,319)(235,320)(236,321)(237,322)(238,313)(239,314)(240,315)(241,316)
(242,317);
poly := sub<Sym(322)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope