include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,8,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,8,10}*1280
if this polytope has a name.
Group : SmallGroup(1280,1083341)
Rank : 6
Schlafli Type : {2,2,2,8,10}
Number of vertices, edges, etc : 2, 2, 2, 8, 40, 10
Order of s0s1s2s3s4s5 : 40
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,4,10}*640
4-fold quotients : {2,2,2,2,10}*320
5-fold quotients : {2,2,2,8,2}*256
8-fold quotients : {2,2,2,2,5}*160
10-fold quotients : {2,2,2,4,2}*128
20-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (17,22)(18,23)(19,24)(20,25)(21,26)(27,42)(28,43)(29,44)(30,45)(31,46)
(32,37)(33,38)(34,39)(35,40)(36,41);;
s4 := ( 7,27)( 8,31)( 9,30)(10,29)(11,28)(12,32)(13,36)(14,35)(15,34)(16,33)
(17,42)(18,46)(19,45)(20,44)(21,43)(22,37)(23,41)(24,40)(25,39)(26,38);;
s5 := ( 7, 8)( 9,11)(12,13)(14,16)(17,18)(19,21)(22,23)(24,26)(27,28)(29,31)
(32,33)(34,36)(37,38)(39,41)(42,43)(44,46);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s3*s4*s5*s4*s3*s4*s5*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(46)!(1,2);
s1 := Sym(46)!(3,4);
s2 := Sym(46)!(5,6);
s3 := Sym(46)!(17,22)(18,23)(19,24)(20,25)(21,26)(27,42)(28,43)(29,44)(30,45)
(31,46)(32,37)(33,38)(34,39)(35,40)(36,41);
s4 := Sym(46)!( 7,27)( 8,31)( 9,30)(10,29)(11,28)(12,32)(13,36)(14,35)(15,34)
(16,33)(17,42)(18,46)(19,45)(20,44)(21,43)(22,37)(23,41)(24,40)(25,39)(26,38);
s5 := Sym(46)!( 7, 8)( 9,11)(12,13)(14,16)(17,18)(19,21)(22,23)(24,26)(27,28)
(29,31)(32,33)(34,36)(37,38)(39,41)(42,43)(44,46);
poly := sub<Sym(46)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s3*s4*s5*s4*s3*s4*s5*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope