Polytope of Type {4,40,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,40,4}*1280a
if this polytope has a name.
Group : SmallGroup(1280,201130)
Rank : 4
Schlafli Type : {4,40,4}
Number of vertices, edges, etc : 4, 80, 80, 4
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,20,4}*640
   4-fold quotients : {2,20,4}*320, {4,20,2}*320, {4,10,4}*320
   5-fold quotients : {4,8,4}*256a
   8-fold quotients : {2,20,2}*160, {2,10,4}*160, {4,10,2}*160
   10-fold quotients : {4,4,4}*128
   16-fold quotients : {2,10,2}*80
   20-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
   32-fold quotients : {2,5,2}*40
   40-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
   80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 41)(  2, 42)(  3, 43)(  4, 44)(  5, 45)(  6, 46)(  7, 47)(  8, 48)
(  9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)( 24, 69)
( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)( 32, 77)
( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)( 40, 75)
( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)( 88,128)
( 89,129)( 90,130)( 91,131)( 92,132)( 93,133)( 94,134)( 95,135)( 96,136)
( 97,137)( 98,138)( 99,139)(100,140)(101,146)(102,147)(103,148)(104,149)
(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)
(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155);;
s1 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 11, 16)( 12, 20)( 13, 19)( 14, 18)
( 15, 17)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)( 33, 34)
( 37, 40)( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 51, 56)( 52, 60)
( 53, 59)( 54, 58)( 55, 57)( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)
( 72, 75)( 73, 74)( 77, 80)( 78, 79)( 81,101)( 82,105)( 83,104)( 84,103)
( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)( 90,107)( 91,116)( 92,120)
( 93,119)( 94,118)( 95,117)( 96,111)( 97,115)( 98,114)( 99,113)(100,112)
(121,141)(122,145)(123,144)(124,143)(125,142)(126,146)(127,150)(128,149)
(129,148)(130,147)(131,156)(132,160)(133,159)(134,158)(135,157)(136,151)
(137,155)(138,154)(139,153)(140,152);;
s2 := (  1, 83)(  2, 82)(  3, 81)(  4, 85)(  5, 84)(  6, 88)(  7, 87)(  8, 86)
(  9, 90)( 10, 89)( 11, 93)( 12, 92)( 13, 91)( 14, 95)( 15, 94)( 16, 98)
( 17, 97)( 18, 96)( 19,100)( 20, 99)( 21,108)( 22,107)( 23,106)( 24,110)
( 25,109)( 26,103)( 27,102)( 28,101)( 29,105)( 30,104)( 31,118)( 32,117)
( 33,116)( 34,120)( 35,119)( 36,113)( 37,112)( 38,111)( 39,115)( 40,114)
( 41,123)( 42,122)( 43,121)( 44,125)( 45,124)( 46,128)( 47,127)( 48,126)
( 49,130)( 50,129)( 51,133)( 52,132)( 53,131)( 54,135)( 55,134)( 56,138)
( 57,137)( 58,136)( 59,140)( 60,139)( 61,148)( 62,147)( 63,146)( 64,150)
( 65,149)( 66,143)( 67,142)( 68,141)( 69,145)( 70,144)( 71,158)( 72,157)
( 73,156)( 74,160)( 75,159)( 76,153)( 77,152)( 78,151)( 79,155)( 80,154);;
s3 := (  1, 41)(  2, 42)(  3, 43)(  4, 44)(  5, 45)(  6, 46)(  7, 47)(  8, 48)
(  9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)( 24, 69)
( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)( 32, 77)
( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)( 40, 75)
( 81,131)( 82,132)( 83,133)( 84,134)( 85,135)( 86,136)( 87,137)( 88,138)
( 89,139)( 90,140)( 91,121)( 92,122)( 93,123)( 94,124)( 95,125)( 96,126)
( 97,127)( 98,128)( 99,129)(100,130)(101,156)(102,157)(103,158)(104,159)
(105,160)(106,151)(107,152)(108,153)(109,154)(110,155)(111,146)(112,147)
(113,148)(114,149)(115,150)(116,141)(117,142)(118,143)(119,144)(120,145);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s3*s2*s1*s2*s3*s1*s0*s1*s2*s1, 
s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(160)!(  1, 41)(  2, 42)(  3, 43)(  4, 44)(  5, 45)(  6, 46)(  7, 47)
(  8, 48)(  9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)
( 24, 69)( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)
( 32, 77)( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)
( 40, 75)( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)
( 88,128)( 89,129)( 90,130)( 91,131)( 92,132)( 93,133)( 94,134)( 95,135)
( 96,136)( 97,137)( 98,138)( 99,139)(100,140)(101,146)(102,147)(103,148)
(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)
(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)
(120,155);
s1 := Sym(160)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 11, 16)( 12, 20)( 13, 19)
( 14, 18)( 15, 17)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)
( 33, 34)( 37, 40)( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 66)( 62, 70)( 63, 69)( 64, 68)
( 65, 67)( 72, 75)( 73, 74)( 77, 80)( 78, 79)( 81,101)( 82,105)( 83,104)
( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)( 90,107)( 91,116)
( 92,120)( 93,119)( 94,118)( 95,117)( 96,111)( 97,115)( 98,114)( 99,113)
(100,112)(121,141)(122,145)(123,144)(124,143)(125,142)(126,146)(127,150)
(128,149)(129,148)(130,147)(131,156)(132,160)(133,159)(134,158)(135,157)
(136,151)(137,155)(138,154)(139,153)(140,152);
s2 := Sym(160)!(  1, 83)(  2, 82)(  3, 81)(  4, 85)(  5, 84)(  6, 88)(  7, 87)
(  8, 86)(  9, 90)( 10, 89)( 11, 93)( 12, 92)( 13, 91)( 14, 95)( 15, 94)
( 16, 98)( 17, 97)( 18, 96)( 19,100)( 20, 99)( 21,108)( 22,107)( 23,106)
( 24,110)( 25,109)( 26,103)( 27,102)( 28,101)( 29,105)( 30,104)( 31,118)
( 32,117)( 33,116)( 34,120)( 35,119)( 36,113)( 37,112)( 38,111)( 39,115)
( 40,114)( 41,123)( 42,122)( 43,121)( 44,125)( 45,124)( 46,128)( 47,127)
( 48,126)( 49,130)( 50,129)( 51,133)( 52,132)( 53,131)( 54,135)( 55,134)
( 56,138)( 57,137)( 58,136)( 59,140)( 60,139)( 61,148)( 62,147)( 63,146)
( 64,150)( 65,149)( 66,143)( 67,142)( 68,141)( 69,145)( 70,144)( 71,158)
( 72,157)( 73,156)( 74,160)( 75,159)( 76,153)( 77,152)( 78,151)( 79,155)
( 80,154);
s3 := Sym(160)!(  1, 41)(  2, 42)(  3, 43)(  4, 44)(  5, 45)(  6, 46)(  7, 47)
(  8, 48)(  9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)
( 24, 69)( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)
( 32, 77)( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)
( 40, 75)( 81,131)( 82,132)( 83,133)( 84,134)( 85,135)( 86,136)( 87,137)
( 88,138)( 89,139)( 90,140)( 91,121)( 92,122)( 93,123)( 94,124)( 95,125)
( 96,126)( 97,127)( 98,128)( 99,129)(100,130)(101,156)(102,157)(103,158)
(104,159)(105,160)(106,151)(107,152)(108,153)(109,154)(110,155)(111,146)
(112,147)(113,148)(114,149)(115,150)(116,141)(117,142)(118,143)(119,144)
(120,145);
poly := sub<Sym(160)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s3*s2*s1*s2*s3*s1*s0*s1*s2*s1, 
s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1 >; 
 
References : None.
to this polytope