include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,40}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,40}*1280g
if this polytope has a name.
Group : SmallGroup(1280,90328)
Rank : 3
Schlafli Type : {8,40}
Number of vertices, edges, etc : 16, 320, 80
Order of s0s1s2 : 40
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,40}*640b
4-fold quotients : {4,20}*320
5-fold quotients : {8,8}*256g
8-fold quotients : {4,20}*160
10-fold quotients : {4,8}*128b
16-fold quotients : {2,20}*80, {4,10}*80
20-fold quotients : {4,4}*64
32-fold quotients : {2,10}*40
40-fold quotients : {4,4}*32
64-fold quotients : {2,5}*20
80-fold quotients : {2,4}*16, {4,2}*16
160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,321)( 2,322)( 3,323)( 4,324)( 5,325)( 6,326)( 7,327)( 8,328)
( 9,329)( 10,330)( 11,336)( 12,337)( 13,338)( 14,339)( 15,340)( 16,331)
( 17,332)( 18,333)( 19,334)( 20,335)( 21,341)( 22,342)( 23,343)( 24,344)
( 25,345)( 26,346)( 27,347)( 28,348)( 29,349)( 30,350)( 31,356)( 32,357)
( 33,358)( 34,359)( 35,360)( 36,351)( 37,352)( 38,353)( 39,354)( 40,355)
( 41,396)( 42,397)( 43,398)( 44,399)( 45,400)( 46,391)( 47,392)( 48,393)
( 49,394)( 50,395)( 51,381)( 52,382)( 53,383)( 54,384)( 55,385)( 56,386)
( 57,387)( 58,388)( 59,389)( 60,390)( 61,371)( 62,372)( 63,373)( 64,374)
( 65,375)( 66,376)( 67,377)( 68,378)( 69,379)( 70,380)( 71,366)( 72,367)
( 73,368)( 74,369)( 75,370)( 76,361)( 77,362)( 78,363)( 79,364)( 80,365)
( 81,406)( 82,407)( 83,408)( 84,409)( 85,410)( 86,401)( 87,402)( 88,403)
( 89,404)( 90,405)( 91,411)( 92,412)( 93,413)( 94,414)( 95,415)( 96,416)
( 97,417)( 98,418)( 99,419)(100,420)(101,426)(102,427)(103,428)(104,429)
(105,430)(106,421)(107,422)(108,423)(109,424)(110,425)(111,431)(112,432)
(113,433)(114,434)(115,435)(116,436)(117,437)(118,438)(119,439)(120,440)
(121,471)(122,472)(123,473)(124,474)(125,475)(126,476)(127,477)(128,478)
(129,479)(130,480)(131,466)(132,467)(133,468)(134,469)(135,470)(136,461)
(137,462)(138,463)(139,464)(140,465)(141,456)(142,457)(143,458)(144,459)
(145,460)(146,451)(147,452)(148,453)(149,454)(150,455)(151,441)(152,442)
(153,443)(154,444)(155,445)(156,446)(157,447)(158,448)(159,449)(160,450)
(161,481)(162,482)(163,483)(164,484)(165,485)(166,486)(167,487)(168,488)
(169,489)(170,490)(171,496)(172,497)(173,498)(174,499)(175,500)(176,491)
(177,492)(178,493)(179,494)(180,495)(181,501)(182,502)(183,503)(184,504)
(185,505)(186,506)(187,507)(188,508)(189,509)(190,510)(191,516)(192,517)
(193,518)(194,519)(195,520)(196,511)(197,512)(198,513)(199,514)(200,515)
(201,556)(202,557)(203,558)(204,559)(205,560)(206,551)(207,552)(208,553)
(209,554)(210,555)(211,541)(212,542)(213,543)(214,544)(215,545)(216,546)
(217,547)(218,548)(219,549)(220,550)(221,531)(222,532)(223,533)(224,534)
(225,535)(226,536)(227,537)(228,538)(229,539)(230,540)(231,526)(232,527)
(233,528)(234,529)(235,530)(236,521)(237,522)(238,523)(239,524)(240,525)
(241,566)(242,567)(243,568)(244,569)(245,570)(246,561)(247,562)(248,563)
(249,564)(250,565)(251,571)(252,572)(253,573)(254,574)(255,575)(256,576)
(257,577)(258,578)(259,579)(260,580)(261,586)(262,587)(263,588)(264,589)
(265,590)(266,581)(267,582)(268,583)(269,584)(270,585)(271,591)(272,592)
(273,593)(274,594)(275,595)(276,596)(277,597)(278,598)(279,599)(280,600)
(281,631)(282,632)(283,633)(284,634)(285,635)(286,636)(287,637)(288,638)
(289,639)(290,640)(291,626)(292,627)(293,628)(294,629)(295,630)(296,621)
(297,622)(298,623)(299,624)(300,625)(301,616)(302,617)(303,618)(304,619)
(305,620)(306,611)(307,612)(308,613)(309,614)(310,615)(311,601)(312,602)
(313,603)(314,604)(315,605)(316,606)(317,607)(318,608)(319,609)(320,610);;
s1 := ( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 21, 31)( 22, 35)( 23, 34)( 24, 33)( 25, 32)( 26, 36)( 27, 40)( 28, 39)
( 29, 38)( 30, 37)( 41, 46)( 42, 50)( 43, 49)( 44, 48)( 45, 47)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 76)( 62, 80)( 63, 79)( 64, 78)
( 65, 77)( 66, 71)( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 81, 86)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 91, 96)( 92,100)( 93, 99)( 94, 98)( 95, 97)
(101,116)(102,120)(103,119)(104,118)(105,117)(106,111)(107,115)(108,114)
(109,113)(110,112)(122,125)(123,124)(127,130)(128,129)(132,135)(133,134)
(137,140)(138,139)(141,151)(142,155)(143,154)(144,153)(145,152)(146,156)
(147,160)(148,159)(149,158)(150,157)(161,201)(162,205)(163,204)(164,203)
(165,202)(166,206)(167,210)(168,209)(169,208)(170,207)(171,211)(172,215)
(173,214)(174,213)(175,212)(176,216)(177,220)(178,219)(179,218)(180,217)
(181,231)(182,235)(183,234)(184,233)(185,232)(186,236)(187,240)(188,239)
(189,238)(190,237)(191,221)(192,225)(193,224)(194,223)(195,222)(196,226)
(197,230)(198,229)(199,228)(200,227)(241,291)(242,295)(243,294)(244,293)
(245,292)(246,296)(247,300)(248,299)(249,298)(250,297)(251,281)(252,285)
(253,284)(254,283)(255,282)(256,286)(257,290)(258,289)(259,288)(260,287)
(261,301)(262,305)(263,304)(264,303)(265,302)(266,306)(267,310)(268,309)
(269,308)(270,307)(271,311)(272,315)(273,314)(274,313)(275,312)(276,316)
(277,320)(278,319)(279,318)(280,317)(321,401)(322,405)(323,404)(324,403)
(325,402)(326,406)(327,410)(328,409)(329,408)(330,407)(331,411)(332,415)
(333,414)(334,413)(335,412)(336,416)(337,420)(338,419)(339,418)(340,417)
(341,431)(342,435)(343,434)(344,433)(345,432)(346,436)(347,440)(348,439)
(349,438)(350,437)(351,421)(352,425)(353,424)(354,423)(355,422)(356,426)
(357,430)(358,429)(359,428)(360,427)(361,446)(362,450)(363,449)(364,448)
(365,447)(366,441)(367,445)(368,444)(369,443)(370,442)(371,456)(372,460)
(373,459)(374,458)(375,457)(376,451)(377,455)(378,454)(379,453)(380,452)
(381,476)(382,480)(383,479)(384,478)(385,477)(386,471)(387,475)(388,474)
(389,473)(390,472)(391,466)(392,470)(393,469)(394,468)(395,467)(396,461)
(397,465)(398,464)(399,463)(400,462)(481,626)(482,630)(483,629)(484,628)
(485,627)(486,621)(487,625)(488,624)(489,623)(490,622)(491,636)(492,640)
(493,639)(494,638)(495,637)(496,631)(497,635)(498,634)(499,633)(500,632)
(501,611)(502,615)(503,614)(504,613)(505,612)(506,616)(507,620)(508,619)
(509,618)(510,617)(511,601)(512,605)(513,604)(514,603)(515,602)(516,606)
(517,610)(518,609)(519,608)(520,607)(521,581)(522,585)(523,584)(524,583)
(525,582)(526,586)(527,590)(528,589)(529,588)(530,587)(531,591)(532,595)
(533,594)(534,593)(535,592)(536,596)(537,600)(538,599)(539,598)(540,597)
(541,576)(542,580)(543,579)(544,578)(545,577)(546,571)(547,575)(548,574)
(549,573)(550,572)(551,566)(552,570)(553,569)(554,568)(555,567)(556,561)
(557,565)(558,564)(559,563)(560,562);;
s2 := ( 1,483)( 2,482)( 3,481)( 4,485)( 5,484)( 6,488)( 7,487)( 8,486)
( 9,490)( 10,489)( 11,493)( 12,492)( 13,491)( 14,495)( 15,494)( 16,498)
( 17,497)( 18,496)( 19,500)( 20,499)( 21,508)( 22,507)( 23,506)( 24,510)
( 25,509)( 26,503)( 27,502)( 28,501)( 29,505)( 30,504)( 31,518)( 32,517)
( 33,516)( 34,520)( 35,519)( 36,513)( 37,512)( 38,511)( 39,515)( 40,514)
( 41,553)( 42,552)( 43,551)( 44,555)( 45,554)( 46,558)( 47,557)( 48,556)
( 49,560)( 50,559)( 51,543)( 52,542)( 53,541)( 54,545)( 55,544)( 56,548)
( 57,547)( 58,546)( 59,550)( 60,549)( 61,533)( 62,532)( 63,531)( 64,535)
( 65,534)( 66,538)( 67,537)( 68,536)( 69,540)( 70,539)( 71,523)( 72,522)
( 73,521)( 74,525)( 75,524)( 76,528)( 77,527)( 78,526)( 79,530)( 80,529)
( 81,588)( 82,587)( 83,586)( 84,590)( 85,589)( 86,583)( 87,582)( 88,581)
( 89,585)( 90,584)( 91,598)( 92,597)( 93,596)( 94,600)( 95,599)( 96,593)
( 97,592)( 98,591)( 99,595)(100,594)(101,568)(102,567)(103,566)(104,570)
(105,569)(106,563)(107,562)(108,561)(109,565)(110,564)(111,578)(112,577)
(113,576)(114,580)(115,579)(116,573)(117,572)(118,571)(119,575)(120,574)
(121,618)(122,617)(123,616)(124,620)(125,619)(126,613)(127,612)(128,611)
(129,615)(130,614)(131,608)(132,607)(133,606)(134,610)(135,609)(136,603)
(137,602)(138,601)(139,605)(140,604)(141,633)(142,632)(143,631)(144,635)
(145,634)(146,638)(147,637)(148,636)(149,640)(150,639)(151,623)(152,622)
(153,621)(154,625)(155,624)(156,628)(157,627)(158,626)(159,630)(160,629)
(161,323)(162,322)(163,321)(164,325)(165,324)(166,328)(167,327)(168,326)
(169,330)(170,329)(171,333)(172,332)(173,331)(174,335)(175,334)(176,338)
(177,337)(178,336)(179,340)(180,339)(181,348)(182,347)(183,346)(184,350)
(185,349)(186,343)(187,342)(188,341)(189,345)(190,344)(191,358)(192,357)
(193,356)(194,360)(195,359)(196,353)(197,352)(198,351)(199,355)(200,354)
(201,393)(202,392)(203,391)(204,395)(205,394)(206,398)(207,397)(208,396)
(209,400)(210,399)(211,383)(212,382)(213,381)(214,385)(215,384)(216,388)
(217,387)(218,386)(219,390)(220,389)(221,373)(222,372)(223,371)(224,375)
(225,374)(226,378)(227,377)(228,376)(229,380)(230,379)(231,363)(232,362)
(233,361)(234,365)(235,364)(236,368)(237,367)(238,366)(239,370)(240,369)
(241,428)(242,427)(243,426)(244,430)(245,429)(246,423)(247,422)(248,421)
(249,425)(250,424)(251,438)(252,437)(253,436)(254,440)(255,439)(256,433)
(257,432)(258,431)(259,435)(260,434)(261,408)(262,407)(263,406)(264,410)
(265,409)(266,403)(267,402)(268,401)(269,405)(270,404)(271,418)(272,417)
(273,416)(274,420)(275,419)(276,413)(277,412)(278,411)(279,415)(280,414)
(281,458)(282,457)(283,456)(284,460)(285,459)(286,453)(287,452)(288,451)
(289,455)(290,454)(291,448)(292,447)(293,446)(294,450)(295,449)(296,443)
(297,442)(298,441)(299,445)(300,444)(301,473)(302,472)(303,471)(304,475)
(305,474)(306,478)(307,477)(308,476)(309,480)(310,479)(311,463)(312,462)
(313,461)(314,465)(315,464)(316,468)(317,467)(318,466)(319,470)(320,469);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0,
s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(640)!( 1,321)( 2,322)( 3,323)( 4,324)( 5,325)( 6,326)( 7,327)
( 8,328)( 9,329)( 10,330)( 11,336)( 12,337)( 13,338)( 14,339)( 15,340)
( 16,331)( 17,332)( 18,333)( 19,334)( 20,335)( 21,341)( 22,342)( 23,343)
( 24,344)( 25,345)( 26,346)( 27,347)( 28,348)( 29,349)( 30,350)( 31,356)
( 32,357)( 33,358)( 34,359)( 35,360)( 36,351)( 37,352)( 38,353)( 39,354)
( 40,355)( 41,396)( 42,397)( 43,398)( 44,399)( 45,400)( 46,391)( 47,392)
( 48,393)( 49,394)( 50,395)( 51,381)( 52,382)( 53,383)( 54,384)( 55,385)
( 56,386)( 57,387)( 58,388)( 59,389)( 60,390)( 61,371)( 62,372)( 63,373)
( 64,374)( 65,375)( 66,376)( 67,377)( 68,378)( 69,379)( 70,380)( 71,366)
( 72,367)( 73,368)( 74,369)( 75,370)( 76,361)( 77,362)( 78,363)( 79,364)
( 80,365)( 81,406)( 82,407)( 83,408)( 84,409)( 85,410)( 86,401)( 87,402)
( 88,403)( 89,404)( 90,405)( 91,411)( 92,412)( 93,413)( 94,414)( 95,415)
( 96,416)( 97,417)( 98,418)( 99,419)(100,420)(101,426)(102,427)(103,428)
(104,429)(105,430)(106,421)(107,422)(108,423)(109,424)(110,425)(111,431)
(112,432)(113,433)(114,434)(115,435)(116,436)(117,437)(118,438)(119,439)
(120,440)(121,471)(122,472)(123,473)(124,474)(125,475)(126,476)(127,477)
(128,478)(129,479)(130,480)(131,466)(132,467)(133,468)(134,469)(135,470)
(136,461)(137,462)(138,463)(139,464)(140,465)(141,456)(142,457)(143,458)
(144,459)(145,460)(146,451)(147,452)(148,453)(149,454)(150,455)(151,441)
(152,442)(153,443)(154,444)(155,445)(156,446)(157,447)(158,448)(159,449)
(160,450)(161,481)(162,482)(163,483)(164,484)(165,485)(166,486)(167,487)
(168,488)(169,489)(170,490)(171,496)(172,497)(173,498)(174,499)(175,500)
(176,491)(177,492)(178,493)(179,494)(180,495)(181,501)(182,502)(183,503)
(184,504)(185,505)(186,506)(187,507)(188,508)(189,509)(190,510)(191,516)
(192,517)(193,518)(194,519)(195,520)(196,511)(197,512)(198,513)(199,514)
(200,515)(201,556)(202,557)(203,558)(204,559)(205,560)(206,551)(207,552)
(208,553)(209,554)(210,555)(211,541)(212,542)(213,543)(214,544)(215,545)
(216,546)(217,547)(218,548)(219,549)(220,550)(221,531)(222,532)(223,533)
(224,534)(225,535)(226,536)(227,537)(228,538)(229,539)(230,540)(231,526)
(232,527)(233,528)(234,529)(235,530)(236,521)(237,522)(238,523)(239,524)
(240,525)(241,566)(242,567)(243,568)(244,569)(245,570)(246,561)(247,562)
(248,563)(249,564)(250,565)(251,571)(252,572)(253,573)(254,574)(255,575)
(256,576)(257,577)(258,578)(259,579)(260,580)(261,586)(262,587)(263,588)
(264,589)(265,590)(266,581)(267,582)(268,583)(269,584)(270,585)(271,591)
(272,592)(273,593)(274,594)(275,595)(276,596)(277,597)(278,598)(279,599)
(280,600)(281,631)(282,632)(283,633)(284,634)(285,635)(286,636)(287,637)
(288,638)(289,639)(290,640)(291,626)(292,627)(293,628)(294,629)(295,630)
(296,621)(297,622)(298,623)(299,624)(300,625)(301,616)(302,617)(303,618)
(304,619)(305,620)(306,611)(307,612)(308,613)(309,614)(310,615)(311,601)
(312,602)(313,603)(314,604)(315,605)(316,606)(317,607)(318,608)(319,609)
(320,610);
s1 := Sym(640)!( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 21, 31)( 22, 35)( 23, 34)( 24, 33)( 25, 32)( 26, 36)( 27, 40)
( 28, 39)( 29, 38)( 30, 37)( 41, 46)( 42, 50)( 43, 49)( 44, 48)( 45, 47)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 76)( 62, 80)( 63, 79)
( 64, 78)( 65, 77)( 66, 71)( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 81, 86)
( 82, 90)( 83, 89)( 84, 88)( 85, 87)( 91, 96)( 92,100)( 93, 99)( 94, 98)
( 95, 97)(101,116)(102,120)(103,119)(104,118)(105,117)(106,111)(107,115)
(108,114)(109,113)(110,112)(122,125)(123,124)(127,130)(128,129)(132,135)
(133,134)(137,140)(138,139)(141,151)(142,155)(143,154)(144,153)(145,152)
(146,156)(147,160)(148,159)(149,158)(150,157)(161,201)(162,205)(163,204)
(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)(170,207)(171,211)
(172,215)(173,214)(174,213)(175,212)(176,216)(177,220)(178,219)(179,218)
(180,217)(181,231)(182,235)(183,234)(184,233)(185,232)(186,236)(187,240)
(188,239)(189,238)(190,237)(191,221)(192,225)(193,224)(194,223)(195,222)
(196,226)(197,230)(198,229)(199,228)(200,227)(241,291)(242,295)(243,294)
(244,293)(245,292)(246,296)(247,300)(248,299)(249,298)(250,297)(251,281)
(252,285)(253,284)(254,283)(255,282)(256,286)(257,290)(258,289)(259,288)
(260,287)(261,301)(262,305)(263,304)(264,303)(265,302)(266,306)(267,310)
(268,309)(269,308)(270,307)(271,311)(272,315)(273,314)(274,313)(275,312)
(276,316)(277,320)(278,319)(279,318)(280,317)(321,401)(322,405)(323,404)
(324,403)(325,402)(326,406)(327,410)(328,409)(329,408)(330,407)(331,411)
(332,415)(333,414)(334,413)(335,412)(336,416)(337,420)(338,419)(339,418)
(340,417)(341,431)(342,435)(343,434)(344,433)(345,432)(346,436)(347,440)
(348,439)(349,438)(350,437)(351,421)(352,425)(353,424)(354,423)(355,422)
(356,426)(357,430)(358,429)(359,428)(360,427)(361,446)(362,450)(363,449)
(364,448)(365,447)(366,441)(367,445)(368,444)(369,443)(370,442)(371,456)
(372,460)(373,459)(374,458)(375,457)(376,451)(377,455)(378,454)(379,453)
(380,452)(381,476)(382,480)(383,479)(384,478)(385,477)(386,471)(387,475)
(388,474)(389,473)(390,472)(391,466)(392,470)(393,469)(394,468)(395,467)
(396,461)(397,465)(398,464)(399,463)(400,462)(481,626)(482,630)(483,629)
(484,628)(485,627)(486,621)(487,625)(488,624)(489,623)(490,622)(491,636)
(492,640)(493,639)(494,638)(495,637)(496,631)(497,635)(498,634)(499,633)
(500,632)(501,611)(502,615)(503,614)(504,613)(505,612)(506,616)(507,620)
(508,619)(509,618)(510,617)(511,601)(512,605)(513,604)(514,603)(515,602)
(516,606)(517,610)(518,609)(519,608)(520,607)(521,581)(522,585)(523,584)
(524,583)(525,582)(526,586)(527,590)(528,589)(529,588)(530,587)(531,591)
(532,595)(533,594)(534,593)(535,592)(536,596)(537,600)(538,599)(539,598)
(540,597)(541,576)(542,580)(543,579)(544,578)(545,577)(546,571)(547,575)
(548,574)(549,573)(550,572)(551,566)(552,570)(553,569)(554,568)(555,567)
(556,561)(557,565)(558,564)(559,563)(560,562);
s2 := Sym(640)!( 1,483)( 2,482)( 3,481)( 4,485)( 5,484)( 6,488)( 7,487)
( 8,486)( 9,490)( 10,489)( 11,493)( 12,492)( 13,491)( 14,495)( 15,494)
( 16,498)( 17,497)( 18,496)( 19,500)( 20,499)( 21,508)( 22,507)( 23,506)
( 24,510)( 25,509)( 26,503)( 27,502)( 28,501)( 29,505)( 30,504)( 31,518)
( 32,517)( 33,516)( 34,520)( 35,519)( 36,513)( 37,512)( 38,511)( 39,515)
( 40,514)( 41,553)( 42,552)( 43,551)( 44,555)( 45,554)( 46,558)( 47,557)
( 48,556)( 49,560)( 50,559)( 51,543)( 52,542)( 53,541)( 54,545)( 55,544)
( 56,548)( 57,547)( 58,546)( 59,550)( 60,549)( 61,533)( 62,532)( 63,531)
( 64,535)( 65,534)( 66,538)( 67,537)( 68,536)( 69,540)( 70,539)( 71,523)
( 72,522)( 73,521)( 74,525)( 75,524)( 76,528)( 77,527)( 78,526)( 79,530)
( 80,529)( 81,588)( 82,587)( 83,586)( 84,590)( 85,589)( 86,583)( 87,582)
( 88,581)( 89,585)( 90,584)( 91,598)( 92,597)( 93,596)( 94,600)( 95,599)
( 96,593)( 97,592)( 98,591)( 99,595)(100,594)(101,568)(102,567)(103,566)
(104,570)(105,569)(106,563)(107,562)(108,561)(109,565)(110,564)(111,578)
(112,577)(113,576)(114,580)(115,579)(116,573)(117,572)(118,571)(119,575)
(120,574)(121,618)(122,617)(123,616)(124,620)(125,619)(126,613)(127,612)
(128,611)(129,615)(130,614)(131,608)(132,607)(133,606)(134,610)(135,609)
(136,603)(137,602)(138,601)(139,605)(140,604)(141,633)(142,632)(143,631)
(144,635)(145,634)(146,638)(147,637)(148,636)(149,640)(150,639)(151,623)
(152,622)(153,621)(154,625)(155,624)(156,628)(157,627)(158,626)(159,630)
(160,629)(161,323)(162,322)(163,321)(164,325)(165,324)(166,328)(167,327)
(168,326)(169,330)(170,329)(171,333)(172,332)(173,331)(174,335)(175,334)
(176,338)(177,337)(178,336)(179,340)(180,339)(181,348)(182,347)(183,346)
(184,350)(185,349)(186,343)(187,342)(188,341)(189,345)(190,344)(191,358)
(192,357)(193,356)(194,360)(195,359)(196,353)(197,352)(198,351)(199,355)
(200,354)(201,393)(202,392)(203,391)(204,395)(205,394)(206,398)(207,397)
(208,396)(209,400)(210,399)(211,383)(212,382)(213,381)(214,385)(215,384)
(216,388)(217,387)(218,386)(219,390)(220,389)(221,373)(222,372)(223,371)
(224,375)(225,374)(226,378)(227,377)(228,376)(229,380)(230,379)(231,363)
(232,362)(233,361)(234,365)(235,364)(236,368)(237,367)(238,366)(239,370)
(240,369)(241,428)(242,427)(243,426)(244,430)(245,429)(246,423)(247,422)
(248,421)(249,425)(250,424)(251,438)(252,437)(253,436)(254,440)(255,439)
(256,433)(257,432)(258,431)(259,435)(260,434)(261,408)(262,407)(263,406)
(264,410)(265,409)(266,403)(267,402)(268,401)(269,405)(270,404)(271,418)
(272,417)(273,416)(274,420)(275,419)(276,413)(277,412)(278,411)(279,415)
(280,414)(281,458)(282,457)(283,456)(284,460)(285,459)(286,453)(287,452)
(288,451)(289,455)(290,454)(291,448)(292,447)(293,446)(294,450)(295,449)
(296,443)(297,442)(298,441)(299,445)(300,444)(301,473)(302,472)(303,471)
(304,475)(305,474)(306,478)(307,477)(308,476)(309,480)(310,479)(311,463)
(312,462)(313,461)(314,465)(315,464)(316,468)(317,467)(318,466)(319,470)
(320,469);
poly := sub<Sym(640)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0,
s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1 >;
References : None.
to this polytope