Polytope of Type {18,3,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,3,4}*1296
if this polytope has a name.
Group : SmallGroup(1296,1784)
Rank : 4
Schlafli Type : {18,3,4}
Number of vertices, edges, etc : 54, 81, 18, 4
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3,4}*432
   9-fold quotients : {6,3,4}*144
   27-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 25)( 14, 26)( 15, 27)( 16, 28)
( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 37, 77)( 38, 78)( 39, 79)( 40, 80)( 41, 73)( 42, 74)( 43, 75)( 44, 76)
( 45, 81)( 46, 82)( 47, 83)( 48, 84)( 49,101)( 50,102)( 51,103)( 52,104)
( 53, 97)( 54, 98)( 55, 99)( 56,100)( 57,105)( 58,106)( 59,107)( 60,108)
( 61, 89)( 62, 90)( 63, 91)( 64, 92)( 65, 85)( 66, 86)( 67, 87)( 68, 88)
( 69, 93)( 70, 94)( 71, 95)( 72, 96);;
s1 := (  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)(  8, 47)
(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 57)( 14, 58)( 15, 60)( 16, 59)
( 17, 53)( 18, 54)( 19, 56)( 20, 55)( 21, 49)( 22, 50)( 23, 52)( 24, 51)
( 25, 65)( 26, 66)( 27, 68)( 28, 67)( 29, 61)( 30, 62)( 31, 64)( 32, 63)
( 33, 69)( 34, 70)( 35, 72)( 36, 71)( 73, 77)( 74, 78)( 75, 80)( 76, 79)
( 83, 84)( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)( 97,105)( 98,106)
( 99,108)(100,107)(103,104);;
s2 := (  2,  4)(  5,  9)(  6, 12)(  7, 11)(  8, 10)( 14, 16)( 17, 21)( 18, 24)
( 19, 23)( 20, 22)( 26, 28)( 29, 33)( 30, 36)( 31, 35)( 32, 34)( 37,101)
( 38,104)( 39,103)( 40,102)( 41, 97)( 42,100)( 43, 99)( 44, 98)( 45,105)
( 46,108)( 47,107)( 48,106)( 49, 77)( 50, 80)( 51, 79)( 52, 78)( 53, 73)
( 54, 76)( 55, 75)( 56, 74)( 57, 81)( 58, 84)( 59, 83)( 60, 82)( 61, 89)
( 62, 92)( 63, 91)( 64, 90)( 65, 85)( 66, 88)( 67, 87)( 68, 86)( 69, 93)
( 70, 96)( 71, 95)( 72, 94);;
s3 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 25)( 14, 26)( 15, 27)
( 16, 28)( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 37, 77)( 38, 78)( 39, 79)( 40, 80)( 41, 73)( 42, 74)( 43, 75)
( 44, 76)( 45, 81)( 46, 82)( 47, 83)( 48, 84)( 49,101)( 50,102)( 51,103)
( 52,104)( 53, 97)( 54, 98)( 55, 99)( 56,100)( 57,105)( 58,106)( 59,107)
( 60,108)( 61, 89)( 62, 90)( 63, 91)( 64, 92)( 65, 85)( 66, 86)( 67, 87)
( 68, 88)( 69, 93)( 70, 94)( 71, 95)( 72, 96);
s1 := Sym(108)!(  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)
(  8, 47)(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 57)( 14, 58)( 15, 60)
( 16, 59)( 17, 53)( 18, 54)( 19, 56)( 20, 55)( 21, 49)( 22, 50)( 23, 52)
( 24, 51)( 25, 65)( 26, 66)( 27, 68)( 28, 67)( 29, 61)( 30, 62)( 31, 64)
( 32, 63)( 33, 69)( 34, 70)( 35, 72)( 36, 71)( 73, 77)( 74, 78)( 75, 80)
( 76, 79)( 83, 84)( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)( 97,105)
( 98,106)( 99,108)(100,107)(103,104);
s2 := Sym(108)!(  2,  4)(  5,  9)(  6, 12)(  7, 11)(  8, 10)( 14, 16)( 17, 21)
( 18, 24)( 19, 23)( 20, 22)( 26, 28)( 29, 33)( 30, 36)( 31, 35)( 32, 34)
( 37,101)( 38,104)( 39,103)( 40,102)( 41, 97)( 42,100)( 43, 99)( 44, 98)
( 45,105)( 46,108)( 47,107)( 48,106)( 49, 77)( 50, 80)( 51, 79)( 52, 78)
( 53, 73)( 54, 76)( 55, 75)( 56, 74)( 57, 81)( 58, 84)( 59, 83)( 60, 82)
( 61, 89)( 62, 92)( 63, 91)( 64, 90)( 65, 85)( 66, 88)( 67, 87)( 68, 86)
( 69, 93)( 70, 96)( 71, 95)( 72, 94);
s3 := Sym(108)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108);
poly := sub<Sym(108)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s3*s2*s1*s3*s2*s1*s3*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope