include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6}*1296b
if this polytope has a name.
Group : SmallGroup(1296,1785)
Rank : 3
Schlafli Type : {9,6}
Number of vertices, edges, etc : 108, 324, 72
Order of s0s1s2 : 36
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {9,6}*432, {3,6}*432
4-fold quotients : {9,6}*324a
9-fold quotients : {3,6}*144
12-fold quotients : {9,6}*108, {3,6}*108
27-fold quotients : {3,6}*48
36-fold quotients : {9,2}*36, {3,6}*36
54-fold quotients : {3,3}*24
108-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)( 17, 29)
( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 37, 97)
( 38, 98)( 39,100)( 40, 99)( 41,101)( 42,102)( 43,104)( 44,103)( 45,105)
( 46,106)( 47,108)( 48,107)( 49, 85)( 50, 86)( 51, 88)( 52, 87)( 53, 89)
( 54, 90)( 55, 92)( 56, 91)( 57, 93)( 58, 94)( 59, 96)( 60, 95)( 61, 73)
( 62, 74)( 63, 76)( 64, 75)( 65, 77)( 66, 78)( 67, 80)( 68, 79)( 69, 81)
( 70, 82)( 71, 84)( 72, 83);;
s1 := ( 1, 41)( 2, 43)( 3, 42)( 4, 44)( 5, 45)( 6, 47)( 7, 46)( 8, 48)
( 9, 37)( 10, 39)( 11, 38)( 12, 40)( 13, 65)( 14, 67)( 15, 66)( 16, 68)
( 17, 69)( 18, 71)( 19, 70)( 20, 72)( 21, 61)( 22, 63)( 23, 62)( 24, 64)
( 25, 53)( 26, 55)( 27, 54)( 28, 56)( 29, 57)( 30, 59)( 31, 58)( 32, 60)
( 33, 49)( 34, 51)( 35, 50)( 36, 52)( 73, 97)( 74, 99)( 75, 98)( 76,100)
( 77,101)( 78,103)( 79,102)( 80,104)( 81,105)( 82,107)( 83,106)( 84,108)
( 86, 87)( 90, 91)( 94, 95);;
s2 := ( 1, 2)( 5, 10)( 6, 9)( 7, 11)( 8, 12)( 13, 14)( 17, 22)( 18, 21)
( 19, 23)( 20, 24)( 25, 26)( 29, 34)( 30, 33)( 31, 35)( 32, 36)( 37, 38)
( 41, 46)( 42, 45)( 43, 47)( 44, 48)( 49, 50)( 53, 58)( 54, 57)( 55, 59)
( 56, 60)( 61, 62)( 65, 70)( 66, 69)( 67, 71)( 68, 72)( 73, 74)( 77, 82)
( 78, 81)( 79, 83)( 80, 84)( 85, 86)( 89, 94)( 90, 93)( 91, 95)( 92, 96)
( 97, 98)(101,106)(102,105)(103,107)(104,108);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(108)!( 3, 4)( 7, 8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)
( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)
( 37, 97)( 38, 98)( 39,100)( 40, 99)( 41,101)( 42,102)( 43,104)( 44,103)
( 45,105)( 46,106)( 47,108)( 48,107)( 49, 85)( 50, 86)( 51, 88)( 52, 87)
( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 93)( 58, 94)( 59, 96)( 60, 95)
( 61, 73)( 62, 74)( 63, 76)( 64, 75)( 65, 77)( 66, 78)( 67, 80)( 68, 79)
( 69, 81)( 70, 82)( 71, 84)( 72, 83);
s1 := Sym(108)!( 1, 41)( 2, 43)( 3, 42)( 4, 44)( 5, 45)( 6, 47)( 7, 46)
( 8, 48)( 9, 37)( 10, 39)( 11, 38)( 12, 40)( 13, 65)( 14, 67)( 15, 66)
( 16, 68)( 17, 69)( 18, 71)( 19, 70)( 20, 72)( 21, 61)( 22, 63)( 23, 62)
( 24, 64)( 25, 53)( 26, 55)( 27, 54)( 28, 56)( 29, 57)( 30, 59)( 31, 58)
( 32, 60)( 33, 49)( 34, 51)( 35, 50)( 36, 52)( 73, 97)( 74, 99)( 75, 98)
( 76,100)( 77,101)( 78,103)( 79,102)( 80,104)( 81,105)( 82,107)( 83,106)
( 84,108)( 86, 87)( 90, 91)( 94, 95);
s2 := Sym(108)!( 1, 2)( 5, 10)( 6, 9)( 7, 11)( 8, 12)( 13, 14)( 17, 22)
( 18, 21)( 19, 23)( 20, 24)( 25, 26)( 29, 34)( 30, 33)( 31, 35)( 32, 36)
( 37, 38)( 41, 46)( 42, 45)( 43, 47)( 44, 48)( 49, 50)( 53, 58)( 54, 57)
( 55, 59)( 56, 60)( 61, 62)( 65, 70)( 66, 69)( 67, 71)( 68, 72)( 73, 74)
( 77, 82)( 78, 81)( 79, 83)( 80, 84)( 85, 86)( 89, 94)( 90, 93)( 91, 95)
( 92, 96)( 97, 98)(101,106)(102,105)(103,107)(104,108);
poly := sub<Sym(108)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0 >;
References : None.
to this polytope