include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,9,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,9,6}*1296d
if this polytope has a name.
Group : SmallGroup(1296,1790)
Rank : 4
Schlafli Type : {4,9,6}
Number of vertices, edges, etc : 4, 54, 81, 18
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,3,6}*432
9-fold quotients : {4,3,6}*144
27-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108);;
s1 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 21)( 14, 22)( 15, 24)
( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)( 37, 73)
( 38, 74)( 39, 76)( 40, 75)( 41, 81)( 42, 82)( 43, 84)( 44, 83)( 45, 77)
( 46, 78)( 47, 80)( 48, 79)( 49, 93)( 50, 94)( 51, 96)( 52, 95)( 53, 89)
( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,101)
( 62,102)( 63,104)( 64,103)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69,105)
( 70,106)( 71,108)( 72,107);;
s2 := ( 1, 85)( 2, 88)( 3, 87)( 4, 86)( 5, 93)( 6, 96)( 7, 95)( 8, 94)
( 9, 89)( 10, 92)( 11, 91)( 12, 90)( 13, 97)( 14,100)( 15, 99)( 16, 98)
( 17,105)( 18,108)( 19,107)( 20,106)( 21,101)( 22,104)( 23,103)( 24,102)
( 25, 73)( 26, 76)( 27, 75)( 28, 74)( 29, 81)( 30, 84)( 31, 83)( 32, 82)
( 33, 77)( 34, 80)( 35, 79)( 36, 78)( 38, 40)( 41, 45)( 42, 48)( 43, 47)
( 44, 46)( 50, 52)( 53, 57)( 54, 60)( 55, 59)( 56, 58)( 62, 64)( 65, 69)
( 66, 72)( 67, 71)( 68, 70);;
s3 := ( 5, 9)( 6, 10)( 7, 11)( 8, 12)( 13, 25)( 14, 26)( 15, 27)( 16, 28)
( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 37, 73)( 38, 74)( 39, 75)( 40, 76)( 41, 81)( 42, 82)( 43, 83)( 44, 84)
( 45, 77)( 46, 78)( 47, 79)( 48, 80)( 49, 97)( 50, 98)( 51, 99)( 52,100)
( 53,105)( 54,106)( 55,107)( 56,108)( 57,101)( 58,102)( 59,103)( 60,104)
( 61, 85)( 62, 86)( 63, 87)( 64, 88)( 65, 93)( 66, 94)( 67, 95)( 68, 96)
( 69, 89)( 70, 90)( 71, 91)( 72, 92);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(108)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108);
s1 := Sym(108)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 21)( 14, 22)
( 15, 24)( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)
( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 81)( 42, 82)( 43, 84)( 44, 83)
( 45, 77)( 46, 78)( 47, 80)( 48, 79)( 49, 93)( 50, 94)( 51, 96)( 52, 95)
( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)
( 61,101)( 62,102)( 63,104)( 64,103)( 65, 97)( 66, 98)( 67,100)( 68, 99)
( 69,105)( 70,106)( 71,108)( 72,107);
s2 := Sym(108)!( 1, 85)( 2, 88)( 3, 87)( 4, 86)( 5, 93)( 6, 96)( 7, 95)
( 8, 94)( 9, 89)( 10, 92)( 11, 91)( 12, 90)( 13, 97)( 14,100)( 15, 99)
( 16, 98)( 17,105)( 18,108)( 19,107)( 20,106)( 21,101)( 22,104)( 23,103)
( 24,102)( 25, 73)( 26, 76)( 27, 75)( 28, 74)( 29, 81)( 30, 84)( 31, 83)
( 32, 82)( 33, 77)( 34, 80)( 35, 79)( 36, 78)( 38, 40)( 41, 45)( 42, 48)
( 43, 47)( 44, 46)( 50, 52)( 53, 57)( 54, 60)( 55, 59)( 56, 58)( 62, 64)
( 65, 69)( 66, 72)( 67, 71)( 68, 70);
s3 := Sym(108)!( 5, 9)( 6, 10)( 7, 11)( 8, 12)( 13, 25)( 14, 26)( 15, 27)
( 16, 28)( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 37, 73)( 38, 74)( 39, 75)( 40, 76)( 41, 81)( 42, 82)( 43, 83)
( 44, 84)( 45, 77)( 46, 78)( 47, 79)( 48, 80)( 49, 97)( 50, 98)( 51, 99)
( 52,100)( 53,105)( 54,106)( 55,107)( 56,108)( 57,101)( 58,102)( 59,103)
( 60,104)( 61, 85)( 62, 86)( 63, 87)( 64, 88)( 65, 93)( 66, 94)( 67, 95)
( 68, 96)( 69, 89)( 70, 90)( 71, 91)( 72, 92);
poly := sub<Sym(108)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope