include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6}*324b
if this polytope has a name.
Group : SmallGroup(324,39)
Rank : 3
Schlafli Type : {9,6}
Number of vertices, edges, etc : 27, 81, 18
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{9,6,2} of size 648
{9,6,4} of size 1296
{9,6,6} of size 1944
Vertex Figure Of :
{2,9,6} of size 648
{4,9,6} of size 1296
{6,9,6} of size 1944
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,6}*108
9-fold quotients : {3,6}*36
27-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,6}*648d
3-fold covers : {9,6}*972a, {9,6}*972b, {9,6}*972c, {9,6}*972d, {9,18}*972j
4-fold covers : {36,6}*1296c, {18,12}*1296g, {9,6}*1296c, {9,12}*1296d
5-fold covers : {45,6}*1620c
6-fold covers : {18,6}*1944a, {18,6}*1944d, {18,6}*1944f, {18,6}*1944h, {18,18}*1944ab, {18,6}*1944q
Permutation Representation (GAP) :
s0 := (1,7)(2,9)(3,8)(5,6);;
s1 := (2,3)(4,8)(5,7)(6,9);;
s2 := (2,3)(5,6)(8,9);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(1,7)(2,9)(3,8)(5,6);
s1 := Sym(9)!(2,3)(4,8)(5,7)(6,9);
s2 := Sym(9)!(2,3)(5,6)(8,9);
poly := sub<Sym(9)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope