include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,36}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,36}*1296e
if this polytope has a name.
Group : SmallGroup(1296,854)
Rank : 3
Schlafli Type : {6,36}
Number of vertices, edges, etc : 18, 324, 108
Order of s0s1s2 : 36
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,18}*648e
3-fold quotients : {6,12}*432a
4-fold quotients : {6,9}*324d
6-fold quotients : {6,6}*216a
9-fold quotients : {6,12}*144b
12-fold quotients : {6,3}*108
18-fold quotients : {6,6}*72b
27-fold quotients : {2,12}*48
36-fold quotients : {6,3}*36
54-fold quotients : {2,6}*24
81-fold quotients : {2,4}*16
108-fold quotients : {2,3}*12
162-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 8)( 5, 9)( 6, 7)( 13, 17)( 14, 18)( 15, 16)( 22, 26)( 23, 27)
( 24, 25)( 28, 55)( 29, 56)( 30, 57)( 31, 62)( 32, 63)( 33, 61)( 34, 60)
( 35, 58)( 36, 59)( 37, 64)( 38, 65)( 39, 66)( 40, 71)( 41, 72)( 42, 70)
( 43, 69)( 44, 67)( 45, 68)( 46, 73)( 47, 74)( 48, 75)( 49, 80)( 50, 81)
( 51, 79)( 52, 78)( 53, 76)( 54, 77)( 85, 89)( 86, 90)( 87, 88)( 94, 98)
( 95, 99)( 96, 97)(103,107)(104,108)(105,106)(109,136)(110,137)(111,138)
(112,143)(113,144)(114,142)(115,141)(116,139)(117,140)(118,145)(119,146)
(120,147)(121,152)(122,153)(123,151)(124,150)(125,148)(126,149)(127,154)
(128,155)(129,156)(130,161)(131,162)(132,160)(133,159)(134,157)(135,158)
(166,170)(167,171)(168,169)(175,179)(176,180)(177,178)(184,188)(185,189)
(186,187)(190,217)(191,218)(192,219)(193,224)(194,225)(195,223)(196,222)
(197,220)(198,221)(199,226)(200,227)(201,228)(202,233)(203,234)(204,232)
(205,231)(206,229)(207,230)(208,235)(209,236)(210,237)(211,242)(212,243)
(213,241)(214,240)(215,238)(216,239)(247,251)(248,252)(249,250)(256,260)
(257,261)(258,259)(265,269)(266,270)(267,268)(271,298)(272,299)(273,300)
(274,305)(275,306)(276,304)(277,303)(278,301)(279,302)(280,307)(281,308)
(282,309)(283,314)(284,315)(285,313)(286,312)(287,310)(288,311)(289,316)
(290,317)(291,318)(292,323)(293,324)(294,322)(295,321)(296,319)(297,320);;
s1 := ( 1, 28)( 2, 30)( 3, 29)( 4, 31)( 5, 33)( 6, 32)( 7, 34)( 8, 36)
( 9, 35)( 10, 54)( 11, 53)( 12, 52)( 13, 48)( 14, 47)( 15, 46)( 16, 51)
( 17, 50)( 18, 49)( 19, 42)( 20, 41)( 21, 40)( 22, 45)( 23, 44)( 24, 43)
( 25, 39)( 26, 38)( 27, 37)( 56, 57)( 59, 60)( 62, 63)( 64, 81)( 65, 80)
( 66, 79)( 67, 75)( 68, 74)( 69, 73)( 70, 78)( 71, 77)( 72, 76)( 82,109)
( 83,111)( 84,110)( 85,112)( 86,114)( 87,113)( 88,115)( 89,117)( 90,116)
( 91,135)( 92,134)( 93,133)( 94,129)( 95,128)( 96,127)( 97,132)( 98,131)
( 99,130)(100,123)(101,122)(102,121)(103,126)(104,125)(105,124)(106,120)
(107,119)(108,118)(137,138)(140,141)(143,144)(145,162)(146,161)(147,160)
(148,156)(149,155)(150,154)(151,159)(152,158)(153,157)(163,271)(164,273)
(165,272)(166,274)(167,276)(168,275)(169,277)(170,279)(171,278)(172,297)
(173,296)(174,295)(175,291)(176,290)(177,289)(178,294)(179,293)(180,292)
(181,285)(182,284)(183,283)(184,288)(185,287)(186,286)(187,282)(188,281)
(189,280)(190,244)(191,246)(192,245)(193,247)(194,249)(195,248)(196,250)
(197,252)(198,251)(199,270)(200,269)(201,268)(202,264)(203,263)(204,262)
(205,267)(206,266)(207,265)(208,258)(209,257)(210,256)(211,261)(212,260)
(213,259)(214,255)(215,254)(216,253)(217,298)(218,300)(219,299)(220,301)
(221,303)(222,302)(223,304)(224,306)(225,305)(226,324)(227,323)(228,322)
(229,318)(230,317)(231,316)(232,321)(233,320)(234,319)(235,312)(236,311)
(237,310)(238,315)(239,314)(240,313)(241,309)(242,308)(243,307);;
s2 := ( 1,172)( 2,174)( 3,173)( 4,177)( 5,176)( 6,175)( 7,179)( 8,178)
( 9,180)( 10,163)( 11,165)( 12,164)( 13,168)( 14,167)( 15,166)( 16,170)
( 17,169)( 18,171)( 19,183)( 20,182)( 21,181)( 22,185)( 23,184)( 24,186)
( 25,187)( 26,189)( 27,188)( 28,226)( 29,228)( 30,227)( 31,231)( 32,230)
( 33,229)( 34,233)( 35,232)( 36,234)( 37,217)( 38,219)( 39,218)( 40,222)
( 41,221)( 42,220)( 43,224)( 44,223)( 45,225)( 46,237)( 47,236)( 48,235)
( 49,239)( 50,238)( 51,240)( 52,241)( 53,243)( 54,242)( 55,199)( 56,201)
( 57,200)( 58,204)( 59,203)( 60,202)( 61,206)( 62,205)( 63,207)( 64,190)
( 65,192)( 66,191)( 67,195)( 68,194)( 69,193)( 70,197)( 71,196)( 72,198)
( 73,210)( 74,209)( 75,208)( 76,212)( 77,211)( 78,213)( 79,214)( 80,216)
( 81,215)( 82,253)( 83,255)( 84,254)( 85,258)( 86,257)( 87,256)( 88,260)
( 89,259)( 90,261)( 91,244)( 92,246)( 93,245)( 94,249)( 95,248)( 96,247)
( 97,251)( 98,250)( 99,252)(100,264)(101,263)(102,262)(103,266)(104,265)
(105,267)(106,268)(107,270)(108,269)(109,307)(110,309)(111,308)(112,312)
(113,311)(114,310)(115,314)(116,313)(117,315)(118,298)(119,300)(120,299)
(121,303)(122,302)(123,301)(124,305)(125,304)(126,306)(127,318)(128,317)
(129,316)(130,320)(131,319)(132,321)(133,322)(134,324)(135,323)(136,280)
(137,282)(138,281)(139,285)(140,284)(141,283)(142,287)(143,286)(144,288)
(145,271)(146,273)(147,272)(148,276)(149,275)(150,274)(151,278)(152,277)
(153,279)(154,291)(155,290)(156,289)(157,293)(158,292)(159,294)(160,295)
(161,297)(162,296);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(324)!( 4, 8)( 5, 9)( 6, 7)( 13, 17)( 14, 18)( 15, 16)( 22, 26)
( 23, 27)( 24, 25)( 28, 55)( 29, 56)( 30, 57)( 31, 62)( 32, 63)( 33, 61)
( 34, 60)( 35, 58)( 36, 59)( 37, 64)( 38, 65)( 39, 66)( 40, 71)( 41, 72)
( 42, 70)( 43, 69)( 44, 67)( 45, 68)( 46, 73)( 47, 74)( 48, 75)( 49, 80)
( 50, 81)( 51, 79)( 52, 78)( 53, 76)( 54, 77)( 85, 89)( 86, 90)( 87, 88)
( 94, 98)( 95, 99)( 96, 97)(103,107)(104,108)(105,106)(109,136)(110,137)
(111,138)(112,143)(113,144)(114,142)(115,141)(116,139)(117,140)(118,145)
(119,146)(120,147)(121,152)(122,153)(123,151)(124,150)(125,148)(126,149)
(127,154)(128,155)(129,156)(130,161)(131,162)(132,160)(133,159)(134,157)
(135,158)(166,170)(167,171)(168,169)(175,179)(176,180)(177,178)(184,188)
(185,189)(186,187)(190,217)(191,218)(192,219)(193,224)(194,225)(195,223)
(196,222)(197,220)(198,221)(199,226)(200,227)(201,228)(202,233)(203,234)
(204,232)(205,231)(206,229)(207,230)(208,235)(209,236)(210,237)(211,242)
(212,243)(213,241)(214,240)(215,238)(216,239)(247,251)(248,252)(249,250)
(256,260)(257,261)(258,259)(265,269)(266,270)(267,268)(271,298)(272,299)
(273,300)(274,305)(275,306)(276,304)(277,303)(278,301)(279,302)(280,307)
(281,308)(282,309)(283,314)(284,315)(285,313)(286,312)(287,310)(288,311)
(289,316)(290,317)(291,318)(292,323)(293,324)(294,322)(295,321)(296,319)
(297,320);
s1 := Sym(324)!( 1, 28)( 2, 30)( 3, 29)( 4, 31)( 5, 33)( 6, 32)( 7, 34)
( 8, 36)( 9, 35)( 10, 54)( 11, 53)( 12, 52)( 13, 48)( 14, 47)( 15, 46)
( 16, 51)( 17, 50)( 18, 49)( 19, 42)( 20, 41)( 21, 40)( 22, 45)( 23, 44)
( 24, 43)( 25, 39)( 26, 38)( 27, 37)( 56, 57)( 59, 60)( 62, 63)( 64, 81)
( 65, 80)( 66, 79)( 67, 75)( 68, 74)( 69, 73)( 70, 78)( 71, 77)( 72, 76)
( 82,109)( 83,111)( 84,110)( 85,112)( 86,114)( 87,113)( 88,115)( 89,117)
( 90,116)( 91,135)( 92,134)( 93,133)( 94,129)( 95,128)( 96,127)( 97,132)
( 98,131)( 99,130)(100,123)(101,122)(102,121)(103,126)(104,125)(105,124)
(106,120)(107,119)(108,118)(137,138)(140,141)(143,144)(145,162)(146,161)
(147,160)(148,156)(149,155)(150,154)(151,159)(152,158)(153,157)(163,271)
(164,273)(165,272)(166,274)(167,276)(168,275)(169,277)(170,279)(171,278)
(172,297)(173,296)(174,295)(175,291)(176,290)(177,289)(178,294)(179,293)
(180,292)(181,285)(182,284)(183,283)(184,288)(185,287)(186,286)(187,282)
(188,281)(189,280)(190,244)(191,246)(192,245)(193,247)(194,249)(195,248)
(196,250)(197,252)(198,251)(199,270)(200,269)(201,268)(202,264)(203,263)
(204,262)(205,267)(206,266)(207,265)(208,258)(209,257)(210,256)(211,261)
(212,260)(213,259)(214,255)(215,254)(216,253)(217,298)(218,300)(219,299)
(220,301)(221,303)(222,302)(223,304)(224,306)(225,305)(226,324)(227,323)
(228,322)(229,318)(230,317)(231,316)(232,321)(233,320)(234,319)(235,312)
(236,311)(237,310)(238,315)(239,314)(240,313)(241,309)(242,308)(243,307);
s2 := Sym(324)!( 1,172)( 2,174)( 3,173)( 4,177)( 5,176)( 6,175)( 7,179)
( 8,178)( 9,180)( 10,163)( 11,165)( 12,164)( 13,168)( 14,167)( 15,166)
( 16,170)( 17,169)( 18,171)( 19,183)( 20,182)( 21,181)( 22,185)( 23,184)
( 24,186)( 25,187)( 26,189)( 27,188)( 28,226)( 29,228)( 30,227)( 31,231)
( 32,230)( 33,229)( 34,233)( 35,232)( 36,234)( 37,217)( 38,219)( 39,218)
( 40,222)( 41,221)( 42,220)( 43,224)( 44,223)( 45,225)( 46,237)( 47,236)
( 48,235)( 49,239)( 50,238)( 51,240)( 52,241)( 53,243)( 54,242)( 55,199)
( 56,201)( 57,200)( 58,204)( 59,203)( 60,202)( 61,206)( 62,205)( 63,207)
( 64,190)( 65,192)( 66,191)( 67,195)( 68,194)( 69,193)( 70,197)( 71,196)
( 72,198)( 73,210)( 74,209)( 75,208)( 76,212)( 77,211)( 78,213)( 79,214)
( 80,216)( 81,215)( 82,253)( 83,255)( 84,254)( 85,258)( 86,257)( 87,256)
( 88,260)( 89,259)( 90,261)( 91,244)( 92,246)( 93,245)( 94,249)( 95,248)
( 96,247)( 97,251)( 98,250)( 99,252)(100,264)(101,263)(102,262)(103,266)
(104,265)(105,267)(106,268)(107,270)(108,269)(109,307)(110,309)(111,308)
(112,312)(113,311)(114,310)(115,314)(116,313)(117,315)(118,298)(119,300)
(120,299)(121,303)(122,302)(123,301)(124,305)(125,304)(126,306)(127,318)
(128,317)(129,316)(130,320)(131,319)(132,321)(133,322)(134,324)(135,323)
(136,280)(137,282)(138,281)(139,285)(140,284)(141,283)(142,287)(143,286)
(144,288)(145,271)(146,273)(147,272)(148,276)(149,275)(150,274)(151,278)
(152,277)(153,279)(154,291)(155,290)(156,289)(157,293)(158,292)(159,294)
(160,295)(161,297)(162,296);
poly := sub<Sym(324)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >;
References : None.
to this polytope