Polytope of Type {42,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {42,4}*1344a
if this polytope has a name.
Group : SmallGroup(1344,6453)
Rank : 3
Schlafli Type : {42,4}
Number of vertices, edges, etc : 168, 336, 16
Order of s0s1s2 : 42
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {42,4}*336b
   7-fold quotients : {6,4}*192a
   8-fold quotients : {21,4}*168
   28-fold quotients : {6,4}*48c
   56-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 97)( 18, 98)
( 19,100)( 20, 99)( 21,101)( 22,102)( 23,104)( 24,103)( 25,109)( 26,110)
( 27,112)( 28,111)( 29,105)( 30,106)( 31,108)( 32,107)( 33, 81)( 34, 82)
( 35, 84)( 36, 83)( 37, 85)( 38, 86)( 39, 88)( 40, 87)( 41, 93)( 42, 94)
( 43, 96)( 44, 95)( 45, 89)( 46, 90)( 47, 92)( 48, 91)( 49, 65)( 50, 66)
( 51, 68)( 52, 67)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 77)( 58, 78)
( 59, 80)( 60, 79)( 61, 73)( 62, 74)( 63, 76)( 64, 75);;
s1 := (  1, 17)(  2, 20)(  3, 19)(  4, 18)(  5, 32)(  6, 29)(  7, 30)(  8, 31)
(  9, 27)( 10, 26)( 11, 25)( 12, 28)( 13, 22)( 14, 23)( 15, 24)( 16, 21)
( 33, 97)( 34,100)( 35, 99)( 36, 98)( 37,112)( 38,109)( 39,110)( 40,111)
( 41,107)( 42,106)( 43,105)( 44,108)( 45,102)( 46,103)( 47,104)( 48,101)
( 49, 81)( 50, 84)( 51, 83)( 52, 82)( 53, 96)( 54, 93)( 55, 94)( 56, 95)
( 57, 91)( 58, 90)( 59, 89)( 60, 92)( 61, 86)( 62, 87)( 63, 88)( 64, 85)
( 66, 68)( 69, 80)( 70, 77)( 71, 78)( 72, 79)( 73, 75);;
s2 := (  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)( 12, 16)
( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)( 28, 32)
( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)( 60, 64)
( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)( 76, 80)
( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
( 97,101)( 98,102)( 99,103)(100,104)(105,109)(106,110)(107,111)(108,112);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(112)!(  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 97)
( 18, 98)( 19,100)( 20, 99)( 21,101)( 22,102)( 23,104)( 24,103)( 25,109)
( 26,110)( 27,112)( 28,111)( 29,105)( 30,106)( 31,108)( 32,107)( 33, 81)
( 34, 82)( 35, 84)( 36, 83)( 37, 85)( 38, 86)( 39, 88)( 40, 87)( 41, 93)
( 42, 94)( 43, 96)( 44, 95)( 45, 89)( 46, 90)( 47, 92)( 48, 91)( 49, 65)
( 50, 66)( 51, 68)( 52, 67)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 77)
( 58, 78)( 59, 80)( 60, 79)( 61, 73)( 62, 74)( 63, 76)( 64, 75);
s1 := Sym(112)!(  1, 17)(  2, 20)(  3, 19)(  4, 18)(  5, 32)(  6, 29)(  7, 30)
(  8, 31)(  9, 27)( 10, 26)( 11, 25)( 12, 28)( 13, 22)( 14, 23)( 15, 24)
( 16, 21)( 33, 97)( 34,100)( 35, 99)( 36, 98)( 37,112)( 38,109)( 39,110)
( 40,111)( 41,107)( 42,106)( 43,105)( 44,108)( 45,102)( 46,103)( 47,104)
( 48,101)( 49, 81)( 50, 84)( 51, 83)( 52, 82)( 53, 96)( 54, 93)( 55, 94)
( 56, 95)( 57, 91)( 58, 90)( 59, 89)( 60, 92)( 61, 86)( 62, 87)( 63, 88)
( 64, 85)( 66, 68)( 69, 80)( 70, 77)( 71, 78)( 72, 79)( 73, 75);
s2 := Sym(112)!(  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)
( 12, 16)( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)
( 28, 32)( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)
( 60, 64)( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)
( 76, 80)( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)( 97,101)( 98,102)( 99,103)(100,104)(105,109)(106,110)(107,111)
(108,112);
poly := sub<Sym(112)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope