Polytope of Type {7,14}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,14}*1372
if this polytope has a name.
Group : SmallGroup(1372,16)
Rank : 3
Schlafli Type : {7,14}
Number of vertices, edges, etc : 49, 343, 98
Order of s0s1s2 : 14
Order of s0s1s2s1 : 14
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   7-fold quotients : {7,14}*196
   49-fold quotients : {7,2}*28
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)
(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);;
s1 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7, 8)(15,47)(16,48)(17,49)
(18,43)(19,44)(20,45)(21,46)(22,38)(23,39)(24,40)(25,41)(26,42)(27,36)
(28,37);;
s2 := ( 2, 7)( 3, 6)( 4, 5)( 8,43)( 9,49)(10,48)(11,47)(12,46)(13,45)(14,44)
(15,36)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,29)(23,35)(24,34)(25,33)
(26,32)(27,31)(28,30);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(49)!( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)
(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);
s1 := Sym(49)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7, 8)(15,47)(16,48)
(17,49)(18,43)(19,44)(20,45)(21,46)(22,38)(23,39)(24,40)(25,41)(26,42)(27,36)
(28,37);
s2 := Sym(49)!( 2, 7)( 3, 6)( 4, 5)( 8,43)( 9,49)(10,48)(11,47)(12,46)(13,45)
(14,44)(15,36)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,29)(23,35)(24,34)
(25,33)(26,32)(27,31)(28,30);
poly := sub<Sym(49)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope