include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,14}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,14}*1372
if this polytope has a name.
Group : SmallGroup(1372,16)
Rank : 3
Schlafli Type : {14,14}
Number of vertices, edges, etc : 49, 343, 49
Order of s0s1s2 : 7
Order of s0s1s2s1 : 14
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8,43)( 9,49)(10,48)(11,47)(12,46)(13,45)(14,44)
(15,36)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,29)(23,35)(24,34)(25,33)
(26,32)(27,31)(28,30);;
s1 := ( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)(15,43)(16,44)(17,45)
(18,46)(19,47)(20,48)(21,49)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)
(28,42);;
s2 := ( 2, 7)( 3, 6)( 4, 5)( 8, 9)(10,14)(11,13)(15,17)(18,21)(19,20)(22,25)
(23,24)(26,28)(29,33)(30,32)(34,35)(36,41)(37,40)(38,39)(43,49)(44,48)
(45,47);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(49)!( 2, 7)( 3, 6)( 4, 5)( 8,43)( 9,49)(10,48)(11,47)(12,46)(13,45)
(14,44)(15,36)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,29)(23,35)(24,34)
(25,33)(26,32)(27,31)(28,30);
s1 := Sym(49)!( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)(15,43)(16,44)
(17,45)(18,46)(19,47)(20,48)(21,49)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)
(28,42);
s2 := Sym(49)!( 2, 7)( 3, 6)( 4, 5)( 8, 9)(10,14)(11,13)(15,17)(18,21)(19,20)
(22,25)(23,24)(26,28)(29,33)(30,32)(34,35)(36,41)(37,40)(38,39)(43,49)(44,48)
(45,47);
poly := sub<Sym(49)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2 >;
References : None.
to this polytope