Polytope of Type {88,2,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {88,2,4}*1408
if this polytope has a name.
Group : SmallGroup(1408,16187)
Rank : 4
Schlafli Type : {88,2,4}
Number of vertices, edges, etc : 88, 88, 4, 4
Order of s0s1s2s3 : 88
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {44,2,4}*704, {88,2,2}*704
   4-fold quotients : {44,2,2}*352, {22,2,4}*352
   8-fold quotients : {11,2,4}*176, {22,2,2}*176
   11-fold quotients : {8,2,4}*128
   16-fold quotients : {11,2,2}*88
   22-fold quotients : {4,2,4}*64, {8,2,2}*64
   44-fold quotients : {2,2,4}*32, {4,2,2}*32
   88-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)(17,18)
(23,34)(24,44)(25,43)(26,42)(27,41)(28,40)(29,39)(30,38)(31,37)(32,36)(33,35)
(45,67)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)
(56,78)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)
(66,79);;
s1 := ( 1,46)( 2,45)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)(10,48)
(11,47)(12,57)(13,56)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,60)(21,59)
(22,58)(23,79)(24,78)(25,88)(26,87)(27,86)(28,85)(29,84)(30,83)(31,82)(32,81)
(33,80)(34,68)(35,67)(36,77)(37,76)(38,75)(39,74)(40,73)(41,72)(42,71)(43,70)
(44,69);;
s2 := (90,91);;
s3 := (89,90)(91,92);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(92)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)
(17,18)(23,34)(24,44)(25,43)(26,42)(27,41)(28,40)(29,39)(30,38)(31,37)(32,36)
(33,35)(45,67)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)
(55,68)(56,78)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)
(66,79);
s1 := Sym(92)!( 1,46)( 2,45)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)
(10,48)(11,47)(12,57)(13,56)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,60)
(21,59)(22,58)(23,79)(24,78)(25,88)(26,87)(27,86)(28,85)(29,84)(30,83)(31,82)
(32,81)(33,80)(34,68)(35,67)(36,77)(37,76)(38,75)(39,74)(40,73)(41,72)(42,71)
(43,70)(44,69);
s2 := Sym(92)!(90,91);
s3 := Sym(92)!(89,90)(91,92);
poly := sub<Sym(92)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope