Polytope of Type {22,2,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {22,2,4}*352
if this polytope has a name.
Group : SmallGroup(352,177)
Rank : 4
Schlafli Type : {22,2,4}
Number of vertices, edges, etc : 22, 22, 4, 4
Order of s0s1s2s3 : 44
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {22,2,4,2} of size 704
   {22,2,4,3} of size 1056
   {22,2,4,4} of size 1408
Vertex Figure Of :
   {2,22,2,4} of size 704
   {4,22,2,4} of size 1408
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {11,2,4}*176, {22,2,2}*176
   4-fold quotients : {11,2,2}*88
   11-fold quotients : {2,2,4}*32
   22-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {44,2,4}*704, {22,4,4}*704, {22,2,8}*704
   3-fold covers : {22,2,12}*1056, {22,6,4}*1056a, {66,2,4}*1056
   4-fold covers : {44,4,4}*1408, {22,4,8}*1408a, {22,8,4}*1408a, {22,4,8}*1408b, {22,8,4}*1408b, {22,4,4}*1408, {44,2,8}*1408, {88,2,4}*1408, {22,2,16}*1408
   5-fold covers : {22,2,20}*1760, {22,10,4}*1760, {110,2,4}*1760
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)
(20,22);;
s2 := (24,25);;
s3 := (23,24)(25,26);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(26)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22);
s1 := Sym(26)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)
(18,19)(20,22);
s2 := Sym(26)!(24,25);
s3 := Sym(26)!(23,24)(25,26);
poly := sub<Sym(26)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope