include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,15}*1440b
if this polytope has a name.
Group : SmallGroup(1440,4612)
Rank : 3
Schlafli Type : {6,15}
Number of vertices, edges, etc : 48, 360, 120
Order of s0s1s2 : 8
Order of s0s1s2s1 : 24
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,15}*720b
3-fold quotients : {6,5}*480
6-fold quotients : {6,5}*240a
12-fold quotients : {6,5}*120a
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,15)( 2,16)( 3,13)( 4,14)( 7, 8)( 9,28)(10,25)(11,26)(12,27)(17,29)
(18,30)(19,32)(20,31)(21,22)(33,36)(37,40)(38,39)(42,43);;
s1 := ( 5, 6)( 7, 8)( 9,30)(10,29)(11,32)(12,31)(13,37)(14,39)(15,40)(16,38)
(17,34)(18,35)(19,36)(20,33)(21,27)(22,26)(23,28)(24,25)(41,42);;
s2 := ( 1,11)( 2,12)( 3,10)( 4, 9)( 5,24)( 6,23)( 7,21)( 8,22)(13,25)(14,28)
(15,26)(16,27)(17,32)(18,31)(19,29)(20,30)(37,39)(38,40)(42,43);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(43)!( 1,15)( 2,16)( 3,13)( 4,14)( 7, 8)( 9,28)(10,25)(11,26)(12,27)
(17,29)(18,30)(19,32)(20,31)(21,22)(33,36)(37,40)(38,39)(42,43);
s1 := Sym(43)!( 5, 6)( 7, 8)( 9,30)(10,29)(11,32)(12,31)(13,37)(14,39)(15,40)
(16,38)(17,34)(18,35)(19,36)(20,33)(21,27)(22,26)(23,28)(24,25)(41,42);
s2 := Sym(43)!( 1,11)( 2,12)( 3,10)( 4, 9)( 5,24)( 6,23)( 7,21)( 8,22)(13,25)
(14,28)(15,26)(16,27)(17,32)(18,31)(19,29)(20,30)(37,39)(38,40)(42,43);
poly := sub<Sym(43)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0 >;
References : None.
to this polytope