Polytope of Type {2,3,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6,4}*288
if this polytope has a name.
Group : SmallGroup(288,977)
Rank : 5
Schlafli Type : {2,3,6,4}
Number of vertices, edges, etc : 2, 3, 9, 12, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,3,6,4,2} of size 576
   {2,3,6,4,4} of size 1152
   {2,3,6,4,6} of size 1728
   {2,3,6,4,3} of size 1728
Vertex Figure Of :
   {2,2,3,6,4} of size 576
   {3,2,3,6,4} of size 864
   {4,2,3,6,4} of size 1152
   {5,2,3,6,4} of size 1440
   {6,2,3,6,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,6,2}*144
   3-fold quotients : {2,3,2,4}*96
   6-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,3,6,8}*576, {2,6,6,4}*576c
   3-fold covers : {2,9,6,4}*864, {2,3,6,4}*864a, {2,3,6,12}*864b, {6,3,6,4}*864
   4-fold covers : {2,3,6,16}*1152, {2,6,12,4}*1152c, {4,6,6,4}*1152b, {2,12,6,4}*1152c, {2,6,6,8}*1152c, {4,3,6,4}*1152, {2,3,6,4}*1152a, {2,3,12,4}*1152
   5-fold covers : {2,3,6,20}*1440, {2,15,6,4}*1440
   6-fold covers : {2,9,6,8}*1728, {2,3,6,8}*1728a, {2,18,6,4}*1728b, {2,6,6,4}*1728c, {2,3,6,24}*1728b, {6,3,6,8}*1728, {2,6,6,12}*1728e, {6,6,6,4}*1728g, {6,6,6,4}*1728h, {2,6,6,4}*1728h
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,39)( 4,41)( 5,40)( 6,45)( 7,47)( 8,46)( 9,42)(10,44)(11,43)(12,48)
(13,50)(14,49)(15,54)(16,56)(17,55)(18,51)(19,53)(20,52)(21,57)(22,59)(23,58)
(24,63)(25,65)(26,64)(27,60)(28,62)(29,61)(30,66)(31,68)(32,67)(33,72)(34,74)
(35,73)(36,69)(37,71)(38,70);;
s2 := ( 3,43)( 4,42)( 5,44)( 6,40)( 7,39)( 8,41)( 9,46)(10,45)(11,47)(12,52)
(13,51)(14,53)(15,49)(16,48)(17,50)(18,55)(19,54)(20,56)(21,61)(22,60)(23,62)
(24,58)(25,57)(26,59)(27,64)(28,63)(29,65)(30,70)(31,69)(32,71)(33,67)(34,66)
(35,68)(36,73)(37,72)(38,74);;
s3 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(21,30)(22,32)(23,31)(24,33)
(25,35)(26,34)(27,36)(28,38)(29,37)(40,41)(43,44)(46,47)(49,50)(52,53)(55,56)
(57,66)(58,68)(59,67)(60,69)(61,71)(62,70)(63,72)(64,74)(65,73);;
s4 := ( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)
(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(39,57)(40,58)(41,59)
(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)
(53,71)(54,72)(55,73)(56,74);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!(1,2);
s1 := Sym(74)!( 3,39)( 4,41)( 5,40)( 6,45)( 7,47)( 8,46)( 9,42)(10,44)(11,43)
(12,48)(13,50)(14,49)(15,54)(16,56)(17,55)(18,51)(19,53)(20,52)(21,57)(22,59)
(23,58)(24,63)(25,65)(26,64)(27,60)(28,62)(29,61)(30,66)(31,68)(32,67)(33,72)
(34,74)(35,73)(36,69)(37,71)(38,70);
s2 := Sym(74)!( 3,43)( 4,42)( 5,44)( 6,40)( 7,39)( 8,41)( 9,46)(10,45)(11,47)
(12,52)(13,51)(14,53)(15,49)(16,48)(17,50)(18,55)(19,54)(20,56)(21,61)(22,60)
(23,62)(24,58)(25,57)(26,59)(27,64)(28,63)(29,65)(30,70)(31,69)(32,71)(33,67)
(34,66)(35,68)(36,73)(37,72)(38,74);
s3 := Sym(74)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(21,30)(22,32)(23,31)
(24,33)(25,35)(26,34)(27,36)(28,38)(29,37)(40,41)(43,44)(46,47)(49,50)(52,53)
(55,56)(57,66)(58,68)(59,67)(60,69)(61,71)(62,70)(63,72)(64,74)(65,73);
s4 := Sym(74)!( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)
(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(39,57)(40,58)
(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)
(52,70)(53,71)(54,72)(55,73)(56,74);
poly := sub<Sym(74)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 >; 
 

to this polytope