include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {15,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,10}*1500g
if this polytope has a name.
Group : SmallGroup(1500,126)
Rank : 3
Schlafli Type : {15,10}
Number of vertices, edges, etc : 75, 375, 50
Order of s0s1s2 : 30
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {3,10}*300
25-fold quotients : {15,2}*60
75-fold quotients : {5,2}*20
125-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 6, 25)( 7, 21)( 8, 22)( 9, 23)( 10, 24)( 11, 19)( 12, 20)( 13, 16)
( 14, 17)( 15, 18)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,125)
( 32,121)( 33,122)( 34,123)( 35,124)( 36,119)( 37,120)( 38,116)( 39,117)
( 40,118)( 41,113)( 42,114)( 43,115)( 44,111)( 45,112)( 46,107)( 47,108)
( 48,109)( 49,110)( 50,106)( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)
( 56,100)( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61, 94)( 62, 95)( 63, 91)
( 64, 92)( 65, 93)( 66, 88)( 67, 89)( 68, 90)( 69, 86)( 70, 87)( 71, 82)
( 72, 83)( 73, 84)( 74, 85)( 75, 81);;
s1 := ( 1, 26)( 2, 50)( 3, 44)( 4, 38)( 5, 32)( 6, 31)( 7, 30)( 8, 49)
( 9, 43)( 10, 37)( 11, 36)( 12, 35)( 13, 29)( 14, 48)( 15, 42)( 16, 41)
( 17, 40)( 18, 34)( 19, 28)( 20, 47)( 21, 46)( 22, 45)( 23, 39)( 24, 33)
( 25, 27)( 51,101)( 52,125)( 53,119)( 54,113)( 55,107)( 56,106)( 57,105)
( 58,124)( 59,118)( 60,112)( 61,111)( 62,110)( 63,104)( 64,123)( 65,117)
( 66,116)( 67,115)( 68,109)( 69,103)( 70,122)( 71,121)( 72,120)( 73,114)
( 74,108)( 75,102)( 77,100)( 78, 94)( 79, 88)( 80, 82)( 83, 99)( 84, 93)
( 85, 87)( 89, 98)( 90, 92)( 95, 97);;
s2 := ( 1, 2)( 3, 5)( 6, 22)( 7, 21)( 8, 25)( 9, 24)( 10, 23)( 11, 17)
( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)( 32, 46)
( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)
( 51, 52)( 53, 55)( 56, 72)( 57, 71)( 58, 75)( 59, 74)( 60, 73)( 61, 67)
( 62, 66)( 63, 70)( 64, 69)( 65, 68)( 76, 77)( 78, 80)( 81, 97)( 82, 96)
( 83,100)( 84, 99)( 85, 98)( 86, 92)( 87, 91)( 88, 95)( 89, 94)( 90, 93)
(101,102)(103,105)(106,122)(107,121)(108,125)(109,124)(110,123)(111,117)
(112,116)(113,120)(114,119)(115,118);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(125)!( 6, 25)( 7, 21)( 8, 22)( 9, 23)( 10, 24)( 11, 19)( 12, 20)
( 13, 16)( 14, 17)( 15, 18)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)
( 31,125)( 32,121)( 33,122)( 34,123)( 35,124)( 36,119)( 37,120)( 38,116)
( 39,117)( 40,118)( 41,113)( 42,114)( 43,115)( 44,111)( 45,112)( 46,107)
( 47,108)( 48,109)( 49,110)( 50,106)( 51, 76)( 52, 77)( 53, 78)( 54, 79)
( 55, 80)( 56,100)( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61, 94)( 62, 95)
( 63, 91)( 64, 92)( 65, 93)( 66, 88)( 67, 89)( 68, 90)( 69, 86)( 70, 87)
( 71, 82)( 72, 83)( 73, 84)( 74, 85)( 75, 81);
s1 := Sym(125)!( 1, 26)( 2, 50)( 3, 44)( 4, 38)( 5, 32)( 6, 31)( 7, 30)
( 8, 49)( 9, 43)( 10, 37)( 11, 36)( 12, 35)( 13, 29)( 14, 48)( 15, 42)
( 16, 41)( 17, 40)( 18, 34)( 19, 28)( 20, 47)( 21, 46)( 22, 45)( 23, 39)
( 24, 33)( 25, 27)( 51,101)( 52,125)( 53,119)( 54,113)( 55,107)( 56,106)
( 57,105)( 58,124)( 59,118)( 60,112)( 61,111)( 62,110)( 63,104)( 64,123)
( 65,117)( 66,116)( 67,115)( 68,109)( 69,103)( 70,122)( 71,121)( 72,120)
( 73,114)( 74,108)( 75,102)( 77,100)( 78, 94)( 79, 88)( 80, 82)( 83, 99)
( 84, 93)( 85, 87)( 89, 98)( 90, 92)( 95, 97);
s2 := Sym(125)!( 1, 2)( 3, 5)( 6, 22)( 7, 21)( 8, 25)( 9, 24)( 10, 23)
( 11, 17)( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)
( 32, 46)( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)
( 40, 43)( 51, 52)( 53, 55)( 56, 72)( 57, 71)( 58, 75)( 59, 74)( 60, 73)
( 61, 67)( 62, 66)( 63, 70)( 64, 69)( 65, 68)( 76, 77)( 78, 80)( 81, 97)
( 82, 96)( 83,100)( 84, 99)( 85, 98)( 86, 92)( 87, 91)( 88, 95)( 89, 94)
( 90, 93)(101,102)(103,105)(106,122)(107,121)(108,125)(109,124)(110,123)
(111,117)(112,116)(113,120)(114,119)(115,118);
poly := sub<Sym(125)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope