include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,10}*1500f
if this polytope has a name.
Group : SmallGroup(1500,126)
Rank : 3
Schlafli Type : {30,10}
Number of vertices, edges, etc : 75, 375, 25
Order of s0s1s2 : 15
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {6,10}*300
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 6, 25)( 7, 21)( 8, 22)( 9, 23)( 10, 24)( 11, 19)( 12, 20)( 13, 16)
( 14, 17)( 15, 18)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,125)
( 32,121)( 33,122)( 34,123)( 35,124)( 36,119)( 37,120)( 38,116)( 39,117)
( 40,118)( 41,113)( 42,114)( 43,115)( 44,111)( 45,112)( 46,107)( 47,108)
( 48,109)( 49,110)( 50,106)( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)
( 56,100)( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61, 94)( 62, 95)( 63, 91)
( 64, 92)( 65, 93)( 66, 88)( 67, 89)( 68, 90)( 69, 86)( 70, 87)( 71, 82)
( 72, 83)( 73, 84)( 74, 85)( 75, 81);;
s1 := ( 1, 26)( 2, 32)( 3, 38)( 4, 44)( 5, 50)( 6, 46)( 7, 27)( 8, 33)
( 9, 39)( 10, 45)( 11, 41)( 12, 47)( 13, 28)( 14, 34)( 15, 40)( 16, 36)
( 17, 42)( 18, 48)( 19, 29)( 20, 35)( 21, 31)( 22, 37)( 23, 43)( 24, 49)
( 25, 30)( 51,101)( 52,107)( 53,113)( 54,119)( 55,125)( 56,121)( 57,102)
( 58,108)( 59,114)( 60,120)( 61,116)( 62,122)( 63,103)( 64,109)( 65,115)
( 66,111)( 67,117)( 68,123)( 69,104)( 70,110)( 71,106)( 72,112)( 73,118)
( 74,124)( 75,105)( 77, 82)( 78, 88)( 79, 94)( 80,100)( 81, 96)( 84, 89)
( 85, 95)( 86, 91)( 87, 97)( 93, 98);;
s2 := ( 1, 2)( 3, 5)( 6, 22)( 7, 21)( 8, 25)( 9, 24)( 10, 23)( 11, 17)
( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)( 32, 46)
( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)
( 51, 52)( 53, 55)( 56, 72)( 57, 71)( 58, 75)( 59, 74)( 60, 73)( 61, 67)
( 62, 66)( 63, 70)( 64, 69)( 65, 68)( 76, 77)( 78, 80)( 81, 97)( 82, 96)
( 83,100)( 84, 99)( 85, 98)( 86, 92)( 87, 91)( 88, 95)( 89, 94)( 90, 93)
(101,102)(103,105)(106,122)(107,121)(108,125)(109,124)(110,123)(111,117)
(112,116)(113,120)(114,119)(115,118);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(125)!( 6, 25)( 7, 21)( 8, 22)( 9, 23)( 10, 24)( 11, 19)( 12, 20)
( 13, 16)( 14, 17)( 15, 18)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)
( 31,125)( 32,121)( 33,122)( 34,123)( 35,124)( 36,119)( 37,120)( 38,116)
( 39,117)( 40,118)( 41,113)( 42,114)( 43,115)( 44,111)( 45,112)( 46,107)
( 47,108)( 48,109)( 49,110)( 50,106)( 51, 76)( 52, 77)( 53, 78)( 54, 79)
( 55, 80)( 56,100)( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61, 94)( 62, 95)
( 63, 91)( 64, 92)( 65, 93)( 66, 88)( 67, 89)( 68, 90)( 69, 86)( 70, 87)
( 71, 82)( 72, 83)( 73, 84)( 74, 85)( 75, 81);
s1 := Sym(125)!( 1, 26)( 2, 32)( 3, 38)( 4, 44)( 5, 50)( 6, 46)( 7, 27)
( 8, 33)( 9, 39)( 10, 45)( 11, 41)( 12, 47)( 13, 28)( 14, 34)( 15, 40)
( 16, 36)( 17, 42)( 18, 48)( 19, 29)( 20, 35)( 21, 31)( 22, 37)( 23, 43)
( 24, 49)( 25, 30)( 51,101)( 52,107)( 53,113)( 54,119)( 55,125)( 56,121)
( 57,102)( 58,108)( 59,114)( 60,120)( 61,116)( 62,122)( 63,103)( 64,109)
( 65,115)( 66,111)( 67,117)( 68,123)( 69,104)( 70,110)( 71,106)( 72,112)
( 73,118)( 74,124)( 75,105)( 77, 82)( 78, 88)( 79, 94)( 80,100)( 81, 96)
( 84, 89)( 85, 95)( 86, 91)( 87, 97)( 93, 98);
s2 := Sym(125)!( 1, 2)( 3, 5)( 6, 22)( 7, 21)( 8, 25)( 9, 24)( 10, 23)
( 11, 17)( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)
( 32, 46)( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)
( 40, 43)( 51, 52)( 53, 55)( 56, 72)( 57, 71)( 58, 75)( 59, 74)( 60, 73)
( 61, 67)( 62, 66)( 63, 70)( 64, 69)( 65, 68)( 76, 77)( 78, 80)( 81, 97)
( 82, 96)( 83,100)( 84, 99)( 85, 98)( 86, 92)( 87, 91)( 88, 95)( 89, 94)
( 90, 93)(101,102)(103,105)(106,122)(107,121)(108,125)(109,124)(110,123)
(111,117)(112,116)(113,120)(114,119)(115,118);
poly := sub<Sym(125)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope