Polytope of Type {4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4}*1568
Also Known As : {4,4}(14,0), {4,4|14}. if this polytope has another name.
Group : SmallGroup(1568,821)
Rank : 3
Schlafli Type : {4,4}
Number of vertices, edges, etc : 196, 392, 196
Order of s0s1s2 : 28
Order of s0s1s2s1 : 14
Special Properties :
   Toroidal
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Halving Operation
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4}*784
   4-fold quotients : {4,4}*392
   49-fold quotients : {4,4}*32
   98-fold quotients : {2,4}*16, {4,2}*16
   196-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 44)(  3, 38)(  4, 32)(  5, 26)(  6, 20)(  7, 14)(  8, 43)(  9, 37)
( 10, 31)( 11, 25)( 12, 19)( 15, 36)( 16, 30)( 17, 24)( 21, 49)( 22, 29)
( 27, 48)( 28, 42)( 33, 47)( 34, 41)( 39, 46)( 51, 93)( 52, 87)( 53, 81)
( 54, 75)( 55, 69)( 56, 63)( 57, 92)( 58, 86)( 59, 80)( 60, 74)( 61, 68)
( 64, 85)( 65, 79)( 66, 73)( 70, 98)( 71, 78)( 76, 97)( 77, 91)( 82, 96)
( 83, 90)( 88, 95)(100,142)(101,136)(102,130)(103,124)(104,118)(105,112)
(106,141)(107,135)(108,129)(109,123)(110,117)(113,134)(114,128)(115,122)
(119,147)(120,127)(125,146)(126,140)(131,145)(132,139)(137,144)(149,191)
(150,185)(151,179)(152,173)(153,167)(154,161)(155,190)(156,184)(157,178)
(158,172)(159,166)(162,183)(163,177)(164,171)(168,196)(169,176)(174,195)
(175,189)(180,194)(181,188)(186,193);;
s1 := (  8, 45)(  9, 46)( 10, 47)( 11, 48)( 12, 49)( 13, 43)( 14, 44)( 15, 40)
( 16, 41)( 17, 42)( 18, 36)( 19, 37)( 20, 38)( 21, 39)( 22, 35)( 23, 29)
( 24, 30)( 25, 31)( 26, 32)( 27, 33)( 28, 34)( 57, 94)( 58, 95)( 59, 96)
( 60, 97)( 61, 98)( 62, 92)( 63, 93)( 64, 89)( 65, 90)( 66, 91)( 67, 85)
( 68, 86)( 69, 87)( 70, 88)( 71, 84)( 72, 78)( 73, 79)( 74, 80)( 75, 81)
( 76, 82)( 77, 83)( 99,148)(100,149)(101,150)(102,151)(103,152)(104,153)
(105,154)(106,192)(107,193)(108,194)(109,195)(110,196)(111,190)(112,191)
(113,187)(114,188)(115,189)(116,183)(117,184)(118,185)(119,186)(120,182)
(121,176)(122,177)(123,178)(124,179)(125,180)(126,181)(127,170)(128,171)
(129,172)(130,173)(131,174)(132,175)(133,169)(134,165)(135,166)(136,167)
(137,168)(138,162)(139,163)(140,164)(141,160)(142,161)(143,155)(144,156)
(145,157)(146,158)(147,159);;
s2 := (  1,121)(  2,127)(  3,140)(  4,146)(  5,103)(  6,109)(  7,115)(  8,128)
(  9,134)( 10,147)( 11,104)( 12,110)( 13,116)( 14,122)( 15,135)( 16,141)
( 17,105)( 18,111)( 19,117)( 20,123)( 21,129)( 22,142)( 23, 99)( 24,112)
( 25,118)( 26,124)( 27,130)( 28,136)( 29,100)( 30,106)( 31,119)( 32,125)
( 33,131)( 34,137)( 35,143)( 36,107)( 37,113)( 38,126)( 39,132)( 40,138)
( 41,144)( 42,101)( 43,114)( 44,120)( 45,133)( 46,139)( 47,145)( 48,102)
( 49,108)( 50,170)( 51,176)( 52,189)( 53,195)( 54,152)( 55,158)( 56,164)
( 57,177)( 58,183)( 59,196)( 60,153)( 61,159)( 62,165)( 63,171)( 64,184)
( 65,190)( 66,154)( 67,160)( 68,166)( 69,172)( 70,178)( 71,191)( 72,148)
( 73,161)( 74,167)( 75,173)( 76,179)( 77,185)( 78,149)( 79,155)( 80,168)
( 81,174)( 82,180)( 83,186)( 84,192)( 85,156)( 86,162)( 87,175)( 88,181)
( 89,187)( 90,193)( 91,150)( 92,163)( 93,169)( 94,182)( 95,188)( 96,194)
( 97,151)( 98,157);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(196)!(  2, 44)(  3, 38)(  4, 32)(  5, 26)(  6, 20)(  7, 14)(  8, 43)
(  9, 37)( 10, 31)( 11, 25)( 12, 19)( 15, 36)( 16, 30)( 17, 24)( 21, 49)
( 22, 29)( 27, 48)( 28, 42)( 33, 47)( 34, 41)( 39, 46)( 51, 93)( 52, 87)
( 53, 81)( 54, 75)( 55, 69)( 56, 63)( 57, 92)( 58, 86)( 59, 80)( 60, 74)
( 61, 68)( 64, 85)( 65, 79)( 66, 73)( 70, 98)( 71, 78)( 76, 97)( 77, 91)
( 82, 96)( 83, 90)( 88, 95)(100,142)(101,136)(102,130)(103,124)(104,118)
(105,112)(106,141)(107,135)(108,129)(109,123)(110,117)(113,134)(114,128)
(115,122)(119,147)(120,127)(125,146)(126,140)(131,145)(132,139)(137,144)
(149,191)(150,185)(151,179)(152,173)(153,167)(154,161)(155,190)(156,184)
(157,178)(158,172)(159,166)(162,183)(163,177)(164,171)(168,196)(169,176)
(174,195)(175,189)(180,194)(181,188)(186,193);
s1 := Sym(196)!(  8, 45)(  9, 46)( 10, 47)( 11, 48)( 12, 49)( 13, 43)( 14, 44)
( 15, 40)( 16, 41)( 17, 42)( 18, 36)( 19, 37)( 20, 38)( 21, 39)( 22, 35)
( 23, 29)( 24, 30)( 25, 31)( 26, 32)( 27, 33)( 28, 34)( 57, 94)( 58, 95)
( 59, 96)( 60, 97)( 61, 98)( 62, 92)( 63, 93)( 64, 89)( 65, 90)( 66, 91)
( 67, 85)( 68, 86)( 69, 87)( 70, 88)( 71, 84)( 72, 78)( 73, 79)( 74, 80)
( 75, 81)( 76, 82)( 77, 83)( 99,148)(100,149)(101,150)(102,151)(103,152)
(104,153)(105,154)(106,192)(107,193)(108,194)(109,195)(110,196)(111,190)
(112,191)(113,187)(114,188)(115,189)(116,183)(117,184)(118,185)(119,186)
(120,182)(121,176)(122,177)(123,178)(124,179)(125,180)(126,181)(127,170)
(128,171)(129,172)(130,173)(131,174)(132,175)(133,169)(134,165)(135,166)
(136,167)(137,168)(138,162)(139,163)(140,164)(141,160)(142,161)(143,155)
(144,156)(145,157)(146,158)(147,159);
s2 := Sym(196)!(  1,121)(  2,127)(  3,140)(  4,146)(  5,103)(  6,109)(  7,115)
(  8,128)(  9,134)( 10,147)( 11,104)( 12,110)( 13,116)( 14,122)( 15,135)
( 16,141)( 17,105)( 18,111)( 19,117)( 20,123)( 21,129)( 22,142)( 23, 99)
( 24,112)( 25,118)( 26,124)( 27,130)( 28,136)( 29,100)( 30,106)( 31,119)
( 32,125)( 33,131)( 34,137)( 35,143)( 36,107)( 37,113)( 38,126)( 39,132)
( 40,138)( 41,144)( 42,101)( 43,114)( 44,120)( 45,133)( 46,139)( 47,145)
( 48,102)( 49,108)( 50,170)( 51,176)( 52,189)( 53,195)( 54,152)( 55,158)
( 56,164)( 57,177)( 58,183)( 59,196)( 60,153)( 61,159)( 62,165)( 63,171)
( 64,184)( 65,190)( 66,154)( 67,160)( 68,166)( 69,172)( 70,178)( 71,191)
( 72,148)( 73,161)( 74,167)( 75,173)( 76,179)( 77,185)( 78,149)( 79,155)
( 80,168)( 81,174)( 82,180)( 83,186)( 84,192)( 85,156)( 86,162)( 87,175)
( 88,181)( 89,187)( 90,193)( 91,150)( 92,163)( 93,169)( 94,182)( 95,188)
( 96,194)( 97,151)( 98,157);
poly := sub<Sym(196)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope